- MDMA
- ADAM
- EA-1475
- Ecstasy
- MDM
- 3,4-Methylenedioxy-N-methylamphetamine
- N-Methyl-3,4-methylenedioxyamphetamine
- X
- XTC
- 1-(2H-1,3-Benzodioxol-5-yl)-N-methylpropan-2-amine
- 1-(1,3-Benzodioxol-5-yl)-N-methylpropan-2-amine
Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.
Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. https://doi.org/10.1002/jps.2600690220 #IIb
Shulgin, AT; Nichols, DE. Characterization of three new psychotomimetics. In The Psychopharmacology of Hallucinogens; Stillman, RC; Willette, RE, Eds., Pergamon, 1 Jan 1978; pp 74–83. 210 kB. https://doi.org/10.1016/B978-0-08-021938-7.50010-2 #4 A different layout of the same paper
Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. https://doi.org/10.1002/cbdv.200690035
Sprague, JE; Huang, X; Kanthasamy, A; Nichols, DE. Attenuation of 3,4-methylenedioxymethamphetamine (MDMA) induced neurotoxicity with the serotonin precursors tryptophan and 5-hydroxytryptophan. Life Sci., 1 Jan 1994, 55 (15), 1193–1198. 336 kB. https://doi.org/10.1016/0024-3205(94)00658-X
Galloway, G; Shulgin, AT; Kornfeld, H; Frederick, SL. Amphetamine, not MDMA, is associated with intracranial hemorrhage. J. Accid. Emerg. Med., 1 Jan 1995, 12 (3), 231–2. 428 kB. https://doi.org/10.1136/emj.12.3.231 The target of Sasha’s critique: Intracranial haemorrhage associated with ingestion of ‘Ecstasy’.
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2.2 MB. https://doi.org/10.1520/JFS12874J
Shulgin, AT. What is MDMA? PharmChem Newsletter, 1 Jan 1985, 14 (3), 3–11. 952 kB.
Trudeau, GB. Ecstasy: Whither the future? In Doonesbury Deluxe; , Henry Holt and Company, 19 Aug 1985; . 3.3 MB.
Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413
Baumann, MH; Ayestas, MA; Partilla, JS; Sink, JR; Shulgin, AT; Daley, PF; Brandt, SD; Rothman, RB; Ruoho, AE; Cozzi, NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacol., 1 Apr 2012, 37, 1192–1203. 763 kB. https://doi.org/10.1038/npp.2011.304
Scorza, MC; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #30
Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. https://doi.org/10.1016/j.talanta.2007.06.012
Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. https://doi.org/10.1016/0014-2999(87)90173-7
Johnson, MP; Hoffman, AJ; Nichols, DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 16 Dec 1986, 132 (2–3), 269–276. 559 kB. https://doi.org/10.1016/0014-2999(86)90615-1
Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. https://doi.org/10.1007/BF03033455
de la Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. https://doi.org/10.1016/j.tips.2004.08.001
Sprague, JE; Nichols, DE. Neurotoxicity of MDMA (ecstasy): beyond metabolism. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 59–60. 60 kB. https://doi.org/10.1016/j.tips.2004.12.001
de la Torre, R; Farré, M; Monks, TJ; Jones, D. Response to Sprague and Nichols: Contribution of metabolic activation to MDMA neurotoxicity. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 60–61. 60 kB. https://doi.org/10.1016/j.tips.2004.12.004
Lieberman, JA; Mailman, RB; Duncan, G; Sikich, L; Chakos, M; Nichols, DE; Kraus, JE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol. Psychiat., 1 Dec 1998, 44 (11), 1099–1117. 154 kB. https://doi.org/10.1016/S0006-3223(98)00187-5
Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. https://doi.org/10.1016/j.forsciint.2004.06.016
Baumann, MH; Clark, RD; Budzynski, AG; Partilla, JS; Blough, BE; Rothman, RB. N-Substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or ‘Ecstasy’). Neuropsychopharmacol., 1 Mar 2005, 30 (3), 550–560. 184 kB. https://doi.org/10.1038/sj.npp.1300585
Puerta, E; Aguirre, N. Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’): Neurodegeneration versus neuromodulation. Pharmaceuticals, 5 Jul 2011, 4 (7), 992–1018. 411 kB. https://doi.org/10.3390/ph4070992
Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001
Selken, J; Nichols, DE. α1-Adrenergic receptors mediate the locomotor response to systemic administration of (±)-3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol. Biochem. Behav., 1 Jan 2007, 86 (4), 622–630. 1.0 MB. https://doi.org/10.1016/j.pbb.2007.02.006
Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.
Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1.5 MB. #IIB
Shulgin, AT; Jacob, P. Potential misrepresentation of 3,4-methylene-dioxyamphetamine (MDA). A toxicological warning. J. Anal. Toxicol., 1 Jan 1982, 6 (2), 71–75. 5.6 MB. https://doi.org/10.1093/jat/6.2.71 #3 GC,MS,IR
Nichols, DE; Hoffman, AJ; Oberlender, RA; Jacob, P; Shulgin, AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: Representatives of a novel therapeutic class. J. Med. Chem., 1 Oct 1986, 29 (10), 2009–2015. 1.0 MB. https://doi.org/10.1021/jm00160a035
Shulgin, AT. The background and chemistry of MDMA. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 291–304. 13.2 MB. https://doi.org/10.1080/02791072.1986.10472361 MS,IR
Brown, CR; McKinney, H; Osterloh, JD; Shulgin, AT; Jacob, P; Olson, KR. Severe adverse reaction to 3,4-methylenedioxymethamphetamine (MDMA). Vet. Hum. Toxicol., 1 Oct 1986, 28 (5), 490. 239 kB.
Shulgin, AT. History of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 1–20. 511 kB. https://doi.org/10.1007/978-1-4613-1485-1_1 #MDMA
McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M
Cozzi, NV; Sievert, MK; Shulgin, AT; Jacob, P; Ruoho, AE. Inhibition of plasma membrane monoamine transporters by β-ketoamphetamines. Eur. J. Pharmacol., 1 Jan 1999, 381 (1), 63–69. 111 kB. https://doi.org/10.1016/S0014-2999(99)00538-5
Nichols, DE; Lloyd, DH; Hoffman, AJ; Nichols, MB; Yim, GKW. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J. Med. Chem., 1 May 1982, 25 (5), 530–535. 804 kB. https://doi.org/10.1021/jm00347a010 #2 NMR,IR
Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 305–313. 10.7 MB. https://doi.org/10.1080/02791072.1986.10472362
Steele, TD; Nichols, DE; Yim, GKW. MDMA transiently alters biogenic amines and metabolites in mouse brain and heart. Pharmacol. Biochem. Behav., 1 Oct 1989, 34 (2), 223–227. 477 kB. https://doi.org/10.1016/0091-3057(89)90303-1
Johnson, MP; Nichols, DE. Neurotoxic effects of the alpha-ethyl homologue of MDMA following subacute administration. Pharmacol. Biochem. Behav., 1 May 1989, 33 (1), 105–108. 399 kB. https://doi.org/10.1016/0091-3057(89)90437-1
Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 23 Jul 1991, 200 (1), 9–16. 1.1 MB. https://doi.org/10.1016/0014-2999(91)90659-E
Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 23 Jul 1991, 200 (1), 53–58. 714 kB. https://doi.org/10.1016/0014-2999(91)90664-C
Johnson, MP; Huang, X; Nichols, DE. Serotonin neurotoxicity in rats after combined treatment with a dopaminergic agent followed by a nonneurotoxic 3,4-methylenedioxymethamphetamine (MDMA) analogue. Pharmacol. Biochem. Behav., 1 Dec 1991, 40 (4), 915–922. 845 kB. https://doi.org/10.1016/0091-3057(91)90106-C
Steele, TD; Brewster, WK; Johnson, MP; Nichols, DE; Yim, GKW. Assessment of the role of α-methylepinine in the neurotoxicity of MDMA. Pharmacol. Biochem. Behav., 1 Feb 1991, 38 (2), 345–351. 723 kB. https://doi.org/10.1016/0091-3057(91)90289-E
Huang, X; Nichols, DE. 5-HT2 receptor-mediated potentiation of dopamine synthesis and central serotonergic deficits. Eur. J. Pharmacol., 20 Jul 1993, 238 (2–3), 291–296. 553 kB. https://doi.org/10.1016/0014-2999(93)90859-G
Marona-Lewicka, D; Rhee, G; Sprague, JE; Nichols, DE. Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol. Biochem. Behav., 1 Jan 1996, 53 (1), 99–105. 1.0 MB. https://doi.org/10.1016/0091-3057(95)00205-7
Falk, EM; Cook, VJ; Nichols, DE; Sprague, JE. An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol. Biochem. Behav., 1 Jun 2002, 72 (3), 617–622. 120 kB. https://doi.org/10.1016/S0091-3057(02)00728-1
Callaghan, PD. Comparative neuropharmacology of the substituted amphetamines, p-methoxyamphatamine (PMA) & 3,4-methylenedioxymethamphetamine (MDMA). Ph. D. Thesis, University of Adelaide, Adelaide, Australia, 1 Aug 2008. 1.6 MB.
Kalant, H. The pharmacology and toxicology of “Ecstasy” (MDMA) and related drugs. Can. Med. Assoc. J., 1 Jan 2001, 165 (7), 917–928. 253 kB.
Green, AR; Mechan, AO; Elliott, JM; O’Shea, E; Colado, MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). Pharmacol. Rev., 1 Jan 2003, 55 (3), 463–508. 544 kB. https://doi.org/10.1124/pr.55.3.3
Capela, JP; Macedo, C; Branco, PS; Ferreira, LM; Lobo, AM; Fernandes, E; Remião, F; Bastos, ML; Dirnagl, U; Meisel, A; Carvalho, FG. Neurotoxicity mechanisms of thioether Ecstasy metabolites. Neuroscience, 1 Jan 2007, 146, 1743–1757. 995 kB. https://doi.org/10.1016/j.neuroscience.2007.03.028
Sessa, B; Nutt, DJ. MDMA, politics and medical research: Have we thrown the baby out with the bathwater? J. Psychopharmacol., 1 Nov 2007, 21 (8), 787–791. 178 kB. https://doi.org/10.1177/0269881107084738
Benzenhõfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. https://doi.org/10.1111/j.1360-0443.2010.02948.x
Pentney, AR. An exploration of the history and controversies surrounding MDMA and MDA. J. Psychoactive Drugs, 1 Jul 2001, 33 (3), 213–221. 871 kB. https://doi.org/10.1080/02791072.2001.10400568
Passie, T; Hartmann, U; Schneider, U; Emrich, HM; Krüger, THC. Ecstasy (MDMA) mimics the post-orgasmic state: Impairment of sexual drive and function during acute MDMA-effects may be due to increased prolactin secretion. Med. Hypotheses, 1 Jan 2005, 64 (5), 899–903. 110 kB. https://doi.org/10.1016/j.mehy.2004.11.044
Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. https://doi.org/10.1016/S0304-3940(02)00823-6
Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. https://doi.org/10.1016/0091-3057(88)90001-9
Benzenhõfer, U; Passie, T. Zur Frühgeschichte von “Ecstasy”. Nervenarzt, 1 Jan 2006, 77 (1), 95–96, 98–99. 533 kB. https://doi.org/10.1007/s00115-005-2001-y
Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.
Pilgrim, JL; Gerostamoulos, D; Woodford, N; Drummer, OH. Serotonin toxicity involving MDMA (ecstasy) and moclobemide. Forensic Sci. Int., 10 Feb 2012, 215 (1–3), 184–188. 189 kB. https://doi.org/10.1016/j.forsciint.2011.04.008
Oberlender, R; Nichols, DE. (+)-N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxymethamphetamine-like behavioral activity. J. Pharmacol. Exp. Ther., 1 Dec 1990, 255 (3), 1098–1106. 1.9 MB.
Capela, JP; Carmo, H; Remião, F; Bastos, ML; Meisel, A; Carvalho, FG. Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: An overview. Mol. Neurobiol., 1 Jun 2009, 39 (3), 210–271. 1.9 MB. https://doi.org/10.1007/s12035-009-8064-1
Brunt, TM; Poortman, A; Niesink, RJM; van den Brink, W. Instability of the ecstasy market and a new kid on the block: mephedrone. J. Psychopharmacol., 1 Nov 2011, 25 (11), 1543–1547. 238 kB. https://doi.org/10.1177/0269881110378370
Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B
Armenian, P; Mamantov, TM; Tsutaoka, BT; Gerona, RRL; Silman, EF; Wu, AHB; Olson, KR. Multiple MDMA (ecstasy) overdoses at a rave event: A case series. J. Intensive Care, 1 Jul 2013, 28 (4), 252-258. 130 kB. https://doi.org/10.1177/0885066612445982
Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 1 Jan 2012, 9 (1), 27–32. 496 kB.
Fenderson5555. Mechanisms in MDMA synthesis. , 5 Jan 2011. . Fenderson5555 4.4 MB.
Maher, HM; Awad, T; DeRuiter, J; Clark, CR. GC–IRD methods for the identification of some tertiary amines related to MDMA. Forensic Sci. Int., 15 Jun 2010, 199 (1–3), 18–28. 877 kB. https://doi.org/10.1016/j.forsciint.2010.02.022
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Hayden Griffin, O. Is the government keeping the peace or acting like our parents? Rationales for the legal prohibitions of GHB and MDMA. J. Drug Issues, 1 Jul 2012, 42 (3), 247–262. 703 kB. https://doi.org/10.1177/0022042612456014
Mohamed, WMY; Hamida, SB; Cassel, J; de Vasconcelos, AP; Jones, BC. MDMA: Interactions with other psychoactive drugs. Pharmacol. Biochem. Behav., 1 Oct 2011, 99 (4), 759–774. 396 kB. https://doi.org/10.1016/j.pbb.2011.06.032
Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 27 Aug 2002, 9, 1634–1638. 115 kB. https://doi.org/10.1039/b200607c
Moonzwe, LS; Schensul, JJ; Kostick, KM. The role of MDMA (Ecstasy) in coping with negative life situations among urban young adults. J. Psychoactive Drugs, 29 Aug 2011, 43 (3), 199–210. 137 kB. https://doi.org/10.1080/02791072.2011.605671
Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. https://doi.org/10.1124/jpet.106.103622
Makino, Y; Kurobane, S; Miyasaka, K. Profiling of ecstasy tablets seized in Japan. Microgram J., 1 Jul 2003, 1 (3–4), 169–176. 614 kB.
Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #49 Rhodium.
Mumane, KS. Neuropharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers. Ph. D. Thesis, Emory University, Atlanta, GA, USA, . 4.3 MB. #MDMA
Gandy, MN; Mclldowie, M; Lewis, K; Wasik, AM; Salomonczyk, D; Wagg, K; Millar, ZA; Tindiglia, D; Huot, P; Johnston, T; Thiele, S; Nguyen, B; Barnes, NM; Brotchie, JM; Martin-Iverson, MT. Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt’s lymphoma cytotoxicity. Med. Chem. Commun., 1 Oct 2010, 1 (4), 287–293. 177 kB. https://doi.org/10.1039/c0md00108b
Oberlender, R; Nichols, DE. Drug discrimination studies with MDMA and amphetamine. Psychopharmacology, 1 May 1988, 95 (1), 71–26. 674 kB. https://doi.org/10.1007/BF00212770
Bailey, K; By, AW; Legault, D; Verner, D. Identification of the N-methylated analogs of the hallucinogenic amphetamines and some isomers. J. Assoc. Off. Anal. Chem., , 58 (1), 62–69. 2.0 MB. #IV GC,LC,MS,NMR,IR,UV,TLC
Stojanovska, N; Fu, S; Tahtouh, M; Kelly, T; Beavis, A; Kirkbride, KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int., 10 Jan 2013, 224 (1–3), 8–26. 813 kB. https://doi.org/10.1016/j.forsciint.2012.10.040
Eshleman, AJ; Wolfrum, KM; Hatfield, MG; Johnson, RA; Murphy, KV; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol., 15 Jun 2013, 85 (12), 1803–1815. 2.2 MB. https://doi.org/10.1016/j.bcp.2013.04.004
Dybdal-Hargreaves, NF; Holder, ND; Ottoson, PE; Sweeney, MD; Williams, T. Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur. J. Pharmacol., 15 Aug 2013, 714 (1–3), 32–40. 837 kB. https://doi.org/10.1016/j.ejphar.2013.05.024
De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 622 kB. https://doi.org/10.1016/j.lfs.2013.10.029
Angoa-Pérez, M; Kane, MJ; Herrera-Mundo, N; Francescutti, DM; Kuhn, DM. Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci., 27 Feb 2014, 97 (1), 31–36. 888 kB. https://doi.org/10.1016/j.lfs.2013.07.015
Halpin, LE; Collins, SA; Yamamoto, BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci., 27 Feb 2014, 97 (1), 37–44. 507 kB. https://doi.org/10.1016/j.lfs.2013.07.014
Vollenweider, FX; Geyer, M; Greer, G. Acute psychological and neurophysiological effects of MDMA in humans. Heffter Rev., , 2, 53–63. 338 kB.
Fromberg, E. Ecstasy: the Dutch story. J. Subst. Use, 1 Jan 1998, 3 (2), 89–94. 709 kB. https://doi.org/10.3109/14659899809053479
Grob, CS. Deconstructing ecstasy: The politics of MDMA research. Addict. Res. Theory, 1 Jan 2000, 8 (6), 549–588. 2.4 MB. https://doi.org/10.3109/16066350008998989
Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. https://doi.org/10.1016/S0041-008X(73)80016-X #VIII
Ziporyn, T. A growing industry and menace: Makeshift laboratory’s designer drugs. JAMA, 12 Dec 1986, 256 (22), 3061–3063. 486 kB. https://doi.org/10.1001/jama.1986.03380220011003
Passie, T; Benzenhöfer, U. The history of MDMA as an underground drug in the United States, 1960–1979. J. Psychoactive Drugs, 14 Mar 2016, 48 (2), 67–75. 1.0 MB. https://doi.org/10.1080/02791072.2015.1128580
Bernschneider-Reif, S; Öxler, F; Freudenmann, RW. The origin of MDMA (“Ecstasy”) – Separating the facts from the myth. Pharmazie, 1 Nov 2006, 61 (11), 966–972. 315 kB.
Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB. #N-Methyl methylene dioxy amphetamine MS,NMR,IR,UV
Parrott, AC. The potential dangers of using MDMA for psychotherapy. J. Psychoactive Drugs, 1 Jan 2014, 46 (1), 37–43. 123 kB. https://doi.org/10.1080/02791072.2014.873690
Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., 1 Aug 1975, 47 (9), 841a–844a. 1.6 MB. https://doi.org/10.1021/ac60359a050
Siegel, RK. MDMA: Nonmedical use and intoxication. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 349–354. 6.0 MB. https://doi.org/10.1080/02791072.1986.10472368
Renfroe, CL. MDMA on the Street: Analysis Anonymous®. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 363–369. 3.7 MB. https://doi.org/10.1080/02791072.1986.10472371
Doblin, R; Greer, G; Holland, J; Jerome, L; Mithoefer, MC; Sessa, B. A reconsideration and response to Parrott AC (2013) “Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research”. Hum. Psychopharmacol. Clin. Exp., 1 Mar 2014, 29 (2), 105–108. 72 kB. https://doi.org/10.1002/hup.2389
Parrott, AC. MDMA is certainly damaging after 25 years of empirical research: a reply and refutation of Doblin et al. (2014). Hum. Psychopharmacol. Clin. Exp., 1 Mar 2014, 29 (2), 109–119. 144 kB. https://doi.org/10.1002/hup.2390
Kapitány-Fövény, M; Kertész, M; Winstock, A; Deluca, P; Corazza, O; Farkas, J; Zacher, G; Urbán, R; Demetrovics, Z. Substitutional potential of mephedrone: an analysis of the subjective effects. Hum. Psychopharmacol. Clin. Exp., 1 Jul 2013, 28 (4), 308–316. 141 kB. https://doi.org/10.1002/hup.2297
Parrott, AC. Human psychobiology of MDMA or “Ecstasy”: an overview of 25 years of empirical research. Hum. Psychopharmacol. Clin. Exp., 1 Jul 2013, 28 (4), 289–307. 363 kB. https://doi.org/10.1002/hup.2318
Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 1 Jan 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9
Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Anal., 1 Jan 2018, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292
Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, 11 Feb 2011, 50, 63-82. 627 kB. Japanese, English abstract
EMCDDA. New drugs in Europe, 2016, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2017. 489 kB.
Ray, TS. Constructing the ecstasy of MDMA from its component mental organs: Proposing the primer/probe method. Med. Hypotheses, 1 Feb 2016, 87 (2016), 48–60. 455 kB. https://doi.org/10.1016/j.mehy.2015.12.018
Mounteney, J; Griffiths, P; Bo, A; Cunningham, A; Matias, J; Pirona, A. Nine reasons why ecstasy is not quite what it used to be. Int. J. Drug Policy, 1 Jan 2018, 51 36–41. 334 kB. https://doi.org/10.1016/j.drugpo.2017.09.016
Nugteren-van Lonkhuyzen, JJ; van Riel, AJHP; Brunt, TM; Hondebrink, L. Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans. Drug Alcohol Depend., 1 Dec 2015, 157, 18–27. 483 kB. https://doi.org/10.1016/j.drugalcdep.2015.10.011 #MDMA
EMCDDA. New drugs in Europe, 2015, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2016. 1.0 MB.
EMCDDA. New drugs in Europe, 2011, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Apr 2012. 401 kB.
Clark, CR. Synthesis and analytical profiles for regioisomeric and isobaric amines related to MDMA, MDEA and MBDB: Differentiation of drug and non-drug substances of mass spectral equivalence, US DOJ, 1 Oct 2011. 3.9 MB. #1.1-3; 3.2-7; 4.2-7; 7.2-9; 9.1
Morris, H. A clandestine chemist’s tale. Hamilton’s Pharmacopeia, 1 Jan 2018. S2 E05, 44:05. Vice 133.4 MB.
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Wasik, AM; Gandy, MN; McIldowie, M; Holder, MJ; Chamba, A; Challa, A; Lewis, KD; Young, SP; Scheel-Toellner, D; Dyer, MJ; Barnes, NM; Piggott, MJ; Gordon, J. Enhancing the anti-lymphoma potential of 3,4-methylenedioxymethamphetamine (‘ecstasy’) through iterative chemical redesign: mechanisms and pathways to cell death. Invest. New Drugs, 1 Aug 2012, 30 (4), 1471-1483. 575 kB. https://doi.org/10.1007/s10637-011-9730-5
Aalberg, L; DeRuiter, J; Noggle, FT; Sippola, E; Clark, CR. Chromatographic and mass spectral methods of identification for the side-chain and ring regioisomers of methylenedioxymethamphetamine. J. Chromatogr. Sci., 1 Aug 2000, 38 (8), 329–336. 861 kB. https://doi.org/10.1093/chromsci/38.8.329 #3
Shulgin, AT. Letter to the DEA re scheduling of MDMA. 29 Aug 1984. 170 kB. #MDMA
Dal Cason, TA; Meyers, JA; Lankin, DC. Proton and carbon-13 NMR assignments of 3,4-methylenedioxyamphetamine (MDA) and some analogues of MDA. Forensic Sci. Int., 18 Apr 1997, 86 (1–2), 15-24. 1.0 MB. https://doi.org/10.1016/S0379-0738(97)02102-6
Burns, DT; Lewis, RJ; Stevenson, P. Determination of 3,4-methylenedioxyamphetamine analogues (“ecstasy”) by proton nuclear magnetic resonance spectrometry. Anal. Chim. Acta, 10 Mar 1997, 339 (3), 259-263. 405 kB. https://doi.org/10.1016/S0003-2670(96)00485-0
Hermle, L; Kraehenmann, R. Experimental psychosis research and schizophrenia—Similarities and dissimilarities in psychopathology. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 313-332. 446 kB. https://doi.org/10.1007/7854_2016_460
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
Hofer, KE; Faber, K; Müller, DM; Hauffe, T; Wenger, U; Kupferschmidt, H; Rauber-Lüthy, C. Acute toxicity associated with the recreational use of the novel psychoactive benzofuran N-methyl-5-(2 aminopropyl)benzofuran. Ann. Emer. Med., 1 Jan 2017, 69 (1), 79-82. 284 kB. https://doi.org/10.1016/j.annemergmed.2016.03.042
Barrett, FS; Griffiths, RR. Classic hallucinogens and mystical experiences: Phenomenology and neural correlates. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 137-158. 848 kB. https://doi.org/10.1007/7854_2017_474
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Halpern, JH; Lerner, AG; Passie, T. A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 333-360. 579 kB. https://doi.org/10.1007/7854_2016_457
Brandt, SD; Kavanagh, PV. Addressing the challenges in forensic drug chemistry. Drug Test. Anal., 1 Mar 2017, 9 (3), 342-346. 120 kB. https://doi.org/10.1002/dta.2169
Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 1 Aug 2016, 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001
Burns, L; Roxburgh, A; Matthews, A; Bruno, R; Lenton, S; Van Buskirk, J. The rise of new psychoactive substance use in Australia. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 846-849. 422 kB. https://doi.org/10.1002/dta.1626
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Burns, L; Roxburgh, A; Bruno, R; Van Buskirk, J. Monitoring drug markets in the Internet age and the evolution of drug monitoring systems in Australia. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 840-845. 113 kB. https://doi.org/10.1002/dta.1613
Hudson, AL; Lalies, MD; Baker, GB; Wells, K; Aitchison, KJ. Ecstasy, legal highs and designer drug use: A Canadian perspective. Drug Science, Policy and Law, 1 Jan 2014, 1, 1-9. 230 kB. https://doi.org/10.1177/2050324513509190
Wilkins, C; Sweetsur, P. The impact of the prohibition of benzylpiperazine (BZP) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand. Drug Alcohol Depend., 1 Jan 2013, 127 (1-3), 72-80. 521 kB. https://doi.org/10.1016/j.drugalcdep.2012.06.014
Neudõrffer, A; Mueller, M; Martinez, C; Mechan, A; McCann, U; Ricaurte, GA; Largeron, M. Synthesis and neurotoxicity profile of 2,4,5-trihydroxymethamphetamine and its 6-(N-acetylcystein-S-yl) conjugate. Chem. Res. Toxicol., 20 Jun 2011, 24 (6), 968–278. 4.8 MB. https://doi.org/10.1021/tx2001459
Cassels, BK; Sáez-Briones, P. DARK classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2448-2458. 648 kB. https://doi.org/10.1021/acschemneuro.8b00215
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Collins, M; Heagney, A; Cordaro, F; Odgers, D; Tarrant, G; Stewart, S. Methyl 3-[3′,4′-(methylenedioxy)phenyl]-2-methyl glycidate: an ecstasy precursor seized in Sydney, Australia. J. Forensic Sci., 1 Jul 2007, 52 (4), 898–903. 714 kB. https://doi.org/10.1111/j.1556-4029.2007.00480.x
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB. #1
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #23a
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #14
Simmler, LD; Liechti, ME. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 143-164. 298 kB. https://doi.org/10.1007/164_2018_113
Gouzoulis-Mayfrank, E; Daumann, J. Neurotoxicity of methylenedioxyamphetamines (MDMA; ecstasy) in humans: how strong is the evidence for persistent brain damage? Addiction, 1 Mar 2006, 101 (3), 348–261. 139 kB. https://doi.org/10.1111/j.1360-0443.2006.01314.x #MDMA
Milhazes, N; Cunha-Oliveira, T; Martins, P; Garrido, J; Oliveira, C; Rego, AC; Borges, F. Synthesis and cytotoxic profile of 3,4-methylenedioxymethamphetamine (“Ecstasy”) and its metabolites on undifferentiated PC12 cells: A putative structure-toxicity relationship. Chem. Res. Toxicol., 1 Oct 2006, 19 (10), 1294–2304. 204 kB. https://doi.org/10.1021/tx060123i #16 MS,NMR,other
Nagai, F; Nonaka, R; Kamimura, KSH. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur. J. Pharmacol., 22 Mar 2007, 559 (2), 132–137. 399 kB. https://doi.org/10.1016/j.ejphar.2006.11.075 #MDMA
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #MDMA
Broadley, KJ. The vascular effects of trace amines and amphetamines. Pharmacol. Ther., 1 Mar 2010, 125 (3), 363–375. 1.1 MB. https://doi.org/10.1016/j.pharmthera.2009.11.005 #3,4-methylenedioxymethamphetamin
Nichols, DF; Oberlender, R. Structure-activity relationships of MDMA and related compounds: A new class of psychoactive agents? In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 105–131. 733 kB. https://doi.org/10.1007/978-1-4613-1485-1_7 #4
Beck, J. The public health implications of MDMA use. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 77–103. 726 kB. https://doi.org/10.1007/978-1-4613-1485-1_6 #MDMA
Bakalar, JB; Grinspoon, L. Testing psychotherapies and drug therapies: The case of psychedelic drugs. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 37–52. 419 kB. https://doi.org/10.1007/978-1-4613-1485-1_3 #MDMA
Greer, GR; Tolbert, R. The therapeutic use of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 21–35. 451 kB. https://doi.org/10.1007/978-1-4613-1485-1_2 #MDMA
Gibb, JW; Stone, D; Johnson, M; Hanson, GR. Neurochemical effects of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 133–150. 659 kB. https://doi.org/10.1007/978-1-4613-1485-1_8 #MDMA
Peroutka, SJ. Recreational use of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 53–62. 577 kB. https://doi.org/10.1007/978-1-4613-1485-1_4 #MDMA
Dowling, GP. Human deaths and toxic reactions attributed to MDMA and MDEA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 63–75. 379 kB. https://doi.org/10.1007/978-1-4613-1485-1_5 #MDMA
Monte, AP; Marona-Lewicka, D; Cozzi, NV; Nichols, DE. Synthesis and pharmacological examination of benzofuran, indan, and tetralin analogues of 3,4-(methylenedioxy)amphetamine. J. Med. Chem., 1 Nov 1993, 36 (23), 3700–3706. 1.0 MB. https://doi.org/10.1021/jm00075a027 #1b MS,NMR
Borth, S; Hänsel, W; Rösner, P; Junge, T. Synthesis of 2,3- and 3,4-methylenedioxyphenylalkylamines and their regioisomeric differentiation by mass spectral analysis using GC-MS-MS. Forensic Sci. Int., 11 Dec 2000, 114 (3), 139–153. 471 kB. https://doi.org/10.1016/S0379-0738(00)00296-6 #2b
Baudot, P; Dresch, M; Dzierzynski, M; Vicherat, A. Identification de dérivés de la 3,4-méthylènedioxyamphétamine par couplage CPG-SM à piégeage d’ions et par RMN. Ann. Fals. Exp. Chim., 1 Oct 1996, 89 (937), 255–272. 912 kB. #MDMA GC,MS,NMR
Baudot, P; Vicherat, A; Viriot, M; Carré, M. Identification of N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB), an homologue derivative of “ecstasy”. Analusis, 1 Jul 1999, 27 (6), 523–532. 107 kB. https://doi.org/10.1051/analusis:1999129 #MDMA GC,LC,MS,NMR
Bishop, SC; McCord, BR; Gratz, SR; Loeliger, JR; Witkowski, MR. Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector. J. Forensic Sci., 1 Mar 2005, 50 (2), 1–10. 597 kB. https://doi.org/10.1520/JFS2004239 #MDMA LC,MS,UV,other
Lee, GSH; Craig, DC; Kannangara, GSK; Dawson, M; Conn, C; Robertson, J; Wilson, MA. Analysis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) in “Ecstasy” tablets by 13C solid state nuclear magnetic resonance (NMR) spectroscopy. J. Forensic Sci., 1 Jul 1999, 44 (4), 761–771. 484 kB. https://doi.org/10.1520/JFS14550J #MDMA NMR,other
Kanthasamy, A; Sprague, JE; Shotwell, JR; Nichols, DE. Unilateral infusion of a dopamine transporter antisense into the substantia nigra protects against MDMA-induced serotonergic deficits in the ipsilateral striatum. Neuroscience, 1 Nov 2002, 114 (4), 917–924. 230 kB. https://doi.org/10.1016/S0306-4522(02)00368-8 #MDMA
Marona-Lewicka, D; Nichols, DE. Drug discrimination studies of the interoceptive cues produced by selective serotonin uptake inhibitors and selective serotonin releasing agents. Psychopharmacology, 1 Jul 1998, 138 (1), 67–75. 129 kB. https://doi.org/10.1007/s002130050646 #MDMA
Walline, CC; Nichols, DE; Carroll, FI; Barker, EL. Comparative molecular field analysis using selectivity fields reveals residues in the third transmembrane helix of the serotonin transporter associated with substrate and antagonist recognition. J. Pharmacol. Exp. Ther., 1 Jun 2008, 325 (3), 791–800. 269 kB. https://doi.org/10.1124/jpet.108.136200 #MDMA
Johnson, MW; Griffiths, RR; Hendricks, PS; Henningfield, JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 1 Nov 2018, 142, 143-166. 2.5 MB. https://doi.org/10.1016/j.neuropharm.2018.05.012 #Ecstasy
EMCDDA. Report on the risk assessment of 4,4′-DMAR, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Oct 2015. 1.1 MB. #MDMA MS,NMR
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #MDMA
Simmons, SJ; Leyrer-Jackson, JM; Oliver, CF; Hicks, C; Muschamp, JW; Rawls, SM; Olive, MF. DARK classics in chemical neuroscience: Cathinone-derived psychostimulants. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2379–2394. 1.6 MB. https://doi.org/10.1021/acschemneuro.8b00147 #MDMA
Chambers, SA; DeSousa, JM; Huseman, ED; Townsend, SD. The DARK side of total synthesis: Strategies and tactics in psychoactive drug production. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2307–2330. 8.1 MB. https://doi.org/10.1021/acschemneuro.7b00528 #129
Rickli, A; Hoener, MC; Liechti, ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur. Neuropsychopharmacol., 1 Mar 2015, 25 (3), 365–376. 1.6 MB. https://doi.org/10.1016/j.euroneuro.2014.12.012 #MDMA
Passie, T; Brandt, SD. Self-experiments with psychoactive substances: A historical perspective. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 69-110. 563 kB. https://doi.org/10.1007/164_2018_177 #MDMA
Dal Cason, TA. The characterization of some 3,4-methylenedioxyphenylisopropylamine (MDA) analogs. J. Forensic Sci., 1 Jul 1989, 34 (4), 928–961. 734 kB. https://doi.org/10.1520/JFS12722J #2 Rhodium. GC,MS,NMR,IR
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S1 Phenethylamines MDMA
Sáez-Briones, P; Castro-Castillo, V; Díaz-Véliz, G; Valladares, L; Barra, R; Hernández, A; Cassels, BK. Aromatic bromination abolishes the psychomotor features and pro-social responses of MDMA (“Ecstasy”) in rats and preserves affinity for the serotonin transporter (SERT). Front. Pharmacol., 28 Feb 2019, 10 (157). 1.8 MB. https://doi.org/10.3389/fphar.2019.00157 #MDMA NMR
Dunlap, LE; Andrews, AM; Olson, DE. DARK classics in chemical neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2408–2427. 940 kB. https://doi.org/10.1021/acschemneuro.8b00155 #1
Zapata-Torres, G; Cassels, BK; Parra-Mouchet, J; Mascarenhas, YP; Ellena, J; De Araujo, AS. Quantum-chemical, NMR and X-ray diffraction studies on (±)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane. J. Mol. Graph. Model., 1 Jun 2008, 26 (8), 1296–1305. 986 kB. https://doi.org/10.1016/j.jmgm.2007.12.004 #MDMA MS,NMR,spot,other
Halberstadt, AL; Brandt, SD; Walther, D; Baumann, MH. 2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α2-adrenergic receptors. Psychopharmacology, 1 Mar 2019, 236 (3), 989-999. 541 kB. https://doi.org/10.1007/s00213-019-05207-1 #MDMA
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #PP-017
Passie, T. The early use of MDMA (‘Ecstasy’) in psychotherapy (1977–1985). Drug Science, Policy and Law, 1 Jan 2018, 4, 1-19. 215 kB. https://doi.org/10.1177/2050324518767442 #MDMA
Kolanos, R; Solis, E; Sakloth, F; De Felice, LJ; Glennon, RA. “Deconstruction” of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem. Neurosci., 18 Dec 2013, 4 (12), 1524–1529. 393 kB. https://doi.org/10.1021/cn4001236 #4 NMR,other
Julian, EA. Microcrystalline identification of drugs of abuse: The psychedelic amphetamines. J. Forensic Sci., 1 Jul 1990, 35 (4), 821–830. 632 kB. https://doi.org/10.1520/JFS12894J #MDMA other
Oberlender, RA. Stereoselective aspects of hallucinogenic drug action and drug discrimination studies of entactogens. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 May 1989. 8.2 MB. #S-MDMA, R-MDMA MS,NMR,IR,other
Noggle, FT; Clark, CR; Andurkar, S; DeRuiter, J. Methods for the analysis of 1-(3,4-methylenedioxyphenyl)-2-butanamine and N-methyl-(3,4-methylenedioxyphenyl)- 2-propanamine (MDMA). J. Chromatogr. Sci., 1 Mar 1991, 29 (3), 103–106. 760 kB. https://doi.org/10.1093/chromsci/29.3.103 #MDMA LC,MS,IR
Noggle, FT; Clark, CR; DeRuiter, J. Gas chromatographic and mass spectrometric analysis of samples from a clandestine laboratory involved in the synthesis of ecstacy from sassafras oil. J. Chromatogr. Sci., 1 Apr 1991, 29 (4), 168–173. 1.1 MB. https://doi.org/10.1093/chromsci/29.4.168 #MDMA GC,MS
Luethi, D; Widmer, R; Trachsel, D; Hoener, MC; Liechti, ME. Monoamine receptor interaction profiles of 4-aryl-substituted 2,5-dimethoxyphenethylamines (2C-BI derivatives). Eur. J. Pharmacol., 1 Jul 2019, 855, 103–111. 983 kB. https://doi.org/10.1016/j.ejphar.2019.05.014 #MDMA
Shimshoni, JA; Winkler, I; Golan, E; Nutt, D. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues. N-S. Arch. Pharmacol., 1 Jan 2017, 390 (1), 15–24. 619 kB. https://doi.org/10.1007/s00210-016-1297-4 #1, MDMA
Sadzot, B; Baraban, JM; Glennon, RA; Lyon, RA; Leonhardt, S; Jan, C; Titeler, M. Hallucinogenic drug interactions at human brain 5-HT2 receptors: implications for treating LSD-induced hallucinogenesis. Psychopharmacology, 1 Aug 1989, 98 (4), 495–499. 895 kB. https://doi.org/10.1007/BF00441948 #MDMA
Klagges, J; Burgos-Villaseca, J; Benavente-Schonhaut, S; Malhue, V; Hernandez, A; Burgos, H; Castro-Castillo, V; Sáez-Briones, P. Behavioral characterization of the acute effects in rats of 2,4-DMA (2,4-dimethoxyamphetamine) as precursor of atypical psychotropic derivatives. ResearchGate, 23 Sep 2015. 312 kB. https://doi.org/10.13140/RG.2.1.3507.8167 #MDMA
Sáez-Briones, P; Hernández, A. MDMA (3,4-Methylenedioxymethamphetamine) Analogues as Tools to Characterize MDMA-Like Effects: An Approach to Understand Entactogen Pharmacology. Curr. Neuropharmacol., 1 Sep 2013, 11 (5), 521–534. 1.4 MB. https://doi.org/10.2174/1570159X11311050007 #MDMA
Pitts, EG; Curry, DW; Hampshire, KN; Young, MB; Howell, LL. (±)-MDMA and its enantiomers: potential therapeutic advantages of R(-)-MDMA. Psychopharmacology, 1 Feb 2018, 235 (2), 377–392. 2.5 MB. https://doi.org/10.1007/s00213-017-4812-5 #MDMA
Meyers-Riggs, B. The mirrored magic of MDMA. countyourculture, countyourculture: rational exploration of the underground, 23 May 2011.
Luethi, D; Kolaczynska, KE; Walter, M; Suzuki, M; Rice, KC; Blough, BE; Hoener, MC; Baumann, MH; Liechti, ME. Metabolites of the ring-substituted stimulants MDMA, methylone and MDPV differentially affect human monoaminergic systems. J. Psychopharmacol., 1 Jul 2019, 33 (7), 831–841. 492 kB. https://doi.org/10.1177/0269881119844185 #MDMA
Hägele, JS; Basrak, M; Schmid, MG. Enantioselective separation of novel psychoactive substances using a Lux® AMP 3 μm column and HPLC-UV. J. Pharm. Biomed. Anal., 5 Feb 2020, 179, 112967. 3.6 MB. https://doi.org/10.1016/j.jpba.2019.112967 #B1 LC
Brandt, SD; Walters, HM; Partilla, JS; Blough, BE; Kavanagh, PV; Baumann, MH. The psychoactive aminoalkylbenzofuran derivatives, 5-APB and 6-APB, mimic the effects of 3,4-methylenedioxyamphetamine (MDA) on monoamine transmission in male rats. Psychopharmacology, 1 Sep 2020, 237 (12), 3703-3714. 1.3 MB. https://doi.org/10.1007/s00213-020-05648-z #MDMA
Nichols, DE. Structure-activity relationships of phenethylamine hallucinogens. J. Pharm. Sci., 1 Aug 1981, 70 (8), 839–849. 1.4 MB. https://doi.org/10.1002/jps.2600700802 #XIX
Sherwood, AM; Claveau, R; Lancelotta, R; Kaylo, KW; Lenoch, K. Synthesis and characterization of 5-MeO-DMT succinate for clinical use. ACS Omega, 15 Dec 2020, 5 (49), 32067–32075. 3.2 MB. https://doi.org/10.1021/acsomega.0c05099 #4 MS,NMR
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #MDMA
Åstrand, A; Guerrieri, D; Vikingsson, S; Kronstrand, R; Green, H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci. Int., 1 Dec 2020, 317, 110553. 1.7 MB. https://doi.org/10.1016/j.forsciint.2020.110553 #MDMA
Asanuma, M; Miyazaki, I; Funada, M. The neurotoxicity of psychoactive phenethylamines “2C series” in cultured monoaminergic neuronal cell lines. Forensic Toxicol., 1 Jul 2020, 38 (2), 394–408. 5.5 MB. https://doi.org/10.1007/s11419-020-00527-w #MDMA
Laing, RR. The disposition of Nicholas Sand’s conspiracy to traffic in LSD, MDA, MDMA and DMT charges. JCLIC, 1 Jul 1998, 8 (3), 15-16. 575 kB.
Poortman, A. Unusual manufacturing of MDMA in the Netherlands. JCLIC, 1 Jan 1998, 8 (1), 25-26. 551 kB. MS
Chappell, JS. Infrared absorption properties of solid-dosage drug substances. Part I. Mechanism of infrared absorption. JCLIC, 1 Oct 2012, 22 (4), 8-26. 1.3 MB. IR
Hugel, J; Robertson, C. The synthesis of MDMA and methamphetamine from the corresponding ketones, methylamine hydrochloride, and sodium borohydride. JCLIC, 1 Jan 2007, 17 (1), 15-25. 707 kB. MS,IR
Pearson, JR; Rowe, JE; Mitchell, WJ; Sette, RMD. Explorations with ecstacy and amphetamine derivatives. JCLIC, 1 Jan 1998, 8 (1), 29-30. 562 kB.
Riggs, M. Medical researchers are steps From legalizing ecstasy. Here’s how they did it. JCLIC, 1 Jul 2017, 27 (3), 12-20. 1.0 MB.
Hattenstone, S. Regrets? They’ve had a few. How does it feel to invent something you later wish you hadn’t? Simon Hattenstone talks to the people who know. JCLIC, 1 Jan 2011, 21 (1), 2-2. 287 kB.
Hugel, J. Debriefing of convicted drug producer. JCLIC, 1 Jan 2000, 10 (1), 23-26. 532 kB.
Dong, C; Ly, C; Dunlap, LE; Vargas, MV; Sun, J; Hwang, I; Azinfar, A; Oh, WC; Wetsel, WC; Olson, DE; Tian, L. Psychedelic-inspired drug discovery using an engineered biosensor. Cell, 13 May 2021, 184 (10), 2779-2792.e18. 8.3 MB. https://doi.org/10.1016/j.cell.2021.03.043 #MDMA NMR
Antonides, LH; Brignall, RM; Costello, A; Ellison, J; Firth, SE; Gilbert, N; Groom, BJ; Hudson, SJ; Hulme, MC; Marron, J; Pullen, ZA; Robertson, TBR; Schofield, CJ; Williamson, DC; Kemsley, EK; Sutcliffe, OB; Mewis, RE. Rapid identification of novel psychoactive and other controlled substances using low-field 1H NMR spectroscopy. ACS Omega, 30 Apr 2019, 4 (4), 7103–7112. 1.3 MB. https://doi.org/10.1021/acsomega.9b00302 #MDMA NMR
de Oliveira Magalhães, L; Arantes, LC; Braga, JWB. Identification of NBOMe and NBOH in blotter papers using a handheld NIR spectrometer and chemometric methods. Microchem. J., 1 Jan 2019, 144, 151–158. 2.7 MB. https://doi.org/10.1016/j.microc.2018.08.051 #MDMA
Plummer, CM; Breadon, TW; Pearson, JR; Jones, OAH. The synthesis and characterisation of MDMA derived from a catalytic oxidation of material isolated from black pepper reveals potential route specific impurities. Sci. Justice, 1 May 2016, 56 (3), 223–230. 630 kB. https://doi.org/10.1016/j.scijus.2016.01.003 #9 GC,NMR
Angenoorth, TJF; Stankovic, S; Niello, M; Holy, M; Brandt, SD; Sitte, HH; Maier, J. Interaction profiles of central nervous system active drugs at human organic cation transporters 1–3 and human plasma membrane monoamine transporter. Int. J. Mol. Sci., 30 Nov 2021, 22 (23), 12995. 5.1 MB. https://doi.org/10.3390/ijms222312995 #MDMA
Kram, TC. Analysis of illicit drug exhibits by hydrogen-1 nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Jul 1978, 23 (3), 456–469. 497 kB. https://doi.org/10.1520/JFS10692J #MDMA NMR
Philp, M; Shimmon, R; Stojanovska, N; Tahtouh, M; Fu, S. Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials. Anal. Methods, 1 Jan 2013, 5 (20), 5402. 783 kB. https://doi.org/10.1039/c3ay40511g #MDMA MS,NMR,IR,spot
Kolaczynska, KE; Ducret, P; Trachsel, D; Hoener, MC; Liechti, ME; Luethi, D. Pharmacological characterization of 3,4-methylenedioxyamphetamine (MDA) analogs and two amphetamine-based compounds: N,α-DEPEA and DPIA. Eur. Neuropsychopharmacol., 1 Jun 2022, 59, 9–22. 1.5 MB. https://doi.org/10.1016/j.euroneuro.2022.03.006 #MDMA
Kolaczynska, KE; Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of 4-alkoxy-3,5-dimethoxy-phenethylamines (mescaline derivatives) and related amphetamines. Front. Pharmacol., 9 Feb 2022, 12 794254. 1.0 MB. https://doi.org/10.3389/fphar.2021.794254
Nair, JB; Hakes, L; Yazar-Klosinski, B; Paisner, K. Fully validated, multi-kilogram cGMP synthesis of MDMA. ACS Omega, 11 Jan 2022, 7 (1), 900–907. 2.6 MB. https://doi.org/10.1021/acsomega.1c05520 #1
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #MDMA