Names:
LSD
METH-LAD
LSD-25
EA-1729
Lysergide
Acid
N,N-Diethyllysergamide
d-Lysergic acid diethylamide
N,N-Diethyl-d-lysergamide
9,10-Didehydro-N,N-diethyl-6-methylergoline-8β-carboxamide
d-Lysergamide, N,N-diethyl
IUPAC name:
(8β)-N,N-Diethyl-6-methyl-9,10-didehydroergoline-8-carboxamide
5026 · C20H25N3O · 323.432
InChI=1S/C20H25N3O/c1-4-23(5-2)20(24)14-9-16-15-7-6-8-17-19(15)13(11-21-17)10-18(16)22(3)12-14/h6-9,11,14,18,21H,4-5,10,12H2,1-3H3/t14-,18-/m1/s1
VAYOSLLFUXYJDT-RDTXWAMCSA-N This stereoisomer Any stereoisomer
CCN(C(=O)[C@H]1CN(C)[C@H]2C(=C1)c1cccc3c1c(C2)c[nH]3)CC

Shulgin, AT. LSD and pregnancy. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 28 Jan 2004.

Shulgin, AT. Morning glory seeds. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 17 Oct 2002.

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #LSD

Pfaff, RC; Huang, X; Marona-Lewicka, D; Oberlender, R; Nichols, DE. Lysergamides revisited. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1994; pp 52–73. 181 kB.

Huang, X; Marona-Lewicka, D; Pfaff, RC; Nichols, DE. Drug discrimination and receptor binding studies of N-isopropyl lysergamide derivatives. Pharmacol. Biochem. Behav., 1 Mar 1994, 47 (3), 667–673. 650 kB. https://doi.org/10.1016/0091-3057(94)90172-4

Hoffman, AJ; Nichols, DE. Synthesis and LSD-like discriminative stimulus properties in a series of N(6)-alkyl norlysergic acid N,N-diethylamide derivatives. J. Med. Chem., 1 Sep 1985, 28 (9), 1252–1255. 583 kB. https://doi.org/10.1021/jm00147a022

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Schindler, EAD; Dave, KD; Smolock, EM; Aloyo, VJ; Harvey, JA. Serotonergic and dopaminergic distinctions in the behavioral pharmacology of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Pharmacol. Biochem. Behav., 1 Mar 2012, 101 (1), 69–76. 722 kB. https://doi.org/10.1016/j.pbb.2011.12.002

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017

Meyers-Riggs, B. Non-LSD ergoloids. countyourculture, countyourculture: rational exploration of the underground, 1 Dec 2011.

Urban, JD; Clarke, WP; von Zastrow, M; Nichols, DE; Kobilka, B; Weinstein, H; Javitch, JA; Roth, BL; Christopoulos, A; Sexton, PM; Miller, KJ; . Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther., 1 Jan 2007, 320 (1), 1–13. 506 kB. https://doi.org/10.1124/jpet.106.104463

Marona-Lewicka, D; Kurrasch-Orbaugh, DM; Selken, JR; Cumbay, MG; Lisnicchia, JG; Nichols, DE. Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine 1A receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology, 1 Oct 2002, 164 (1), 93–107. 293 kB. https://doi.org/10.1007/s00213-002-1141-z

Wurst, M; Kysilka, R; Flieger, M. Psychoactive tryptamines from Basidiomycetes. Folia Microbiol., 1 Feb 2002, 47 (1), 3–27. 3.1 MB. https://doi.org/10.1007/BF02818560

Marona-Lewicka, D; Nichols, CD; Nichols, DE. An animal model of schizophrenia based on chronic LSD administration: Old idea, new results. Neuropharmacology, 1 Sep 2011, 61 (3), 503–512. 803 kB. https://doi.org/10.1016/j.neuropharm.2011.02.006

Lieberman, JA; Mailman, RB; Duncan, G; Sikich, L; Chakos, M; Nichols, DE; Kraus, JE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol. Psychiat., 1 Dec 1998, 44 (11), 1099–1117. 154 kB. https://doi.org/10.1016/S0006-3223(98)00187-5

Nichols, DE. Structural correlation between apomorphine and LSD: Involvement of dopamine as well as serotonin in the actions of hallucinogens. J. Theor. Biol., 1 Jun 1976, 59 (1), 167–177. 614 kB. https://doi.org/10.1016/S0022-5193(76)80030-6

Vollenweider, FX; Kometer, M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat. Rev. Neurosci., 1 Sep 2010, 11 (9), 642–651. 588 kB. https://doi.org/10.1038/nrn2884

Abramson, HA. Lysergic acid diethylamide (LSD-25) XXXI. Comparison by questionnaire of psychotomimetic activity of congeners on normal subjects and drug addicts. Br. J. Psychiatry, 1 Jul 1960, 106 (444), 1120–1123. 425 kB. https://doi.org/10.1192/bjp.106.444.1120

Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255

Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1970; pp 21–41. 8.6 MB.

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.

Shulgin, AT. Profiles of psychedelic drugs. 9. LSD. J. Psychedelic Drugs, 1 Jan 1980, 12 (2), 173–174. 1.0 MB. https://doi.org/10.1080/02791072.1980.10471571

Oberlender, R; Pfaff, RC; Johnson, MP; Huang, X; Nichols, DE. Stereoselective LSD-like activity in d-lysergic acid amides of R- and S-2-aminobutane. J. Med. Chem., 1 Jan 1992, 35 (2), 203–211. 1.1 MB. https://doi.org/10.1021/jm00080a001

Watts, VJ; Mailman, RB; Lawler, CP; Neve, KA; Nichols, DE. LSD and structural analogs: Pharmacological evaluation at D1 dopamine receptors. Psychopharmacology, 1 Apr 1995, 118 (4), 401–409. 1.4 MB. https://doi.org/10.1007/BF02245940

Passie, T; Halpern, JH; Stichtenoth, DO; Emrich, HM; Hintzen, A. The pharmacology of lysergic acid diethylamide: A review. CNS Neurosci. Ther., 1 Jan 2008, 14 (4), 295–314. 690 kB. https://doi.org/10.1111/j.1755-5949.2008.00059.x

Moreno, JL; Holloway, T; Albizu, L; Sealfon, SC; González-Maeso, J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci. Lett., 15 Apr 2011, 493 (3), 76–79. 196 kB. https://doi.org/10.1016/j.neulet.2011.01.046

Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.

Gorodetzky, CW; Isbell, H. A comparison of 2,3-dihydro-lysergic acid diethylamide with LSD-25. Psychopharmacology, 1 May 1964, 6 (3), 229–233. 317 kB. https://doi.org/10.1007/BF00404013

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #31 NMR

Ginzel, KH; Mayer-Gross, W. Prevention of psychological effects of d-lysergic acid diethylamide (LSD 25) by its 2-brom derivative (BOL 148). Nature, 28 Jul 1956, 178 (4526), 210. 129 kB. https://doi.org/10.1038/178210a0

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Fenderson5555. A more modern lysergic acid synthesis. , 28 Jun 2011. . Fenderson5555 3.3 MB.

Fenderson5555. Total synthesis of lysergic acid via Pd-catalysed domino cyclizations. , 4 Dec 2011. . Fenderson5555 6.4 MB.

Fenderson5555. Total synthesis of lysergic acid. , 25 Jun 2011. . Fenderson5555 4.4 MB.

Green, AR. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK. Br. J. Pharmacol., 1 Aug 2008, 1554 (8), 1583–1599. 418 kB. https://doi.org/10.1038/bjp.2008.207

Nichols, DE. Potential psychotomimetics: Bromomethoxyamphetamines and structural congeners of lysergic acid. Ph. D. Thesis, University of Iowa, Iowa City, IA, 1 May 1973. 13.0 MB. #2

Paulke, A; Kremer, C; Wunder, C; Achenbach, J; Djahanschiri, B; Elias, A; Schwed, JS; Hübner, H; Gmeiner, P; Proschak, E; Toennes, SW; Stark, H. Argyreia nervosa (Burm. f.): Receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches. J. Ethnopharmacol., 9 Jul 2013, 148 (2), 492–497. 555 kB. https://doi.org/10.1016/j.jep.2013.04.044

McKenna, DJ; Saavedra, JM. Autoradiography of LSD and 2,5-dimethoxyphenylisopropylamine psychotomimetics demonstrates regional, specific cross-displacement in the rat brain. Eur. J. Pharmacol., 13 Oct 1987, 142 (2), 313–315. 263 kB. https://doi.org/10.1016/0014-2999(87)90121-X

Schindler, EAD. Behavioral and biochemical distinctions in the pharmacology of two common hallucinogens. Ph. D. Thesis, Drexel University, Philadelphia, PA, USA, 1 Apr 2010. 5.9 MB.

Ang, RLL. Molecular basis of the action of hallucinogens. Ph. D. Thesis, New York University, New York, NY, USA, 2010. 2.4 MB.

Reissig, CJ. The 5-HT1A receptor and hallucinogens. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 7 Sep 2006. 943 kB.

Regina, MJ. Biochemical changes associated with serotonergic hallucinogens. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 1 Jun 2005. 3.4 MB.

Martin, DA; Marona-Lewicka, D; Nichols, DE; Nichols, CD. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology, 1 Aug 2014, 83, 1–8. 1.2 MB. https://doi.org/10.1016/j.neuropharm.2014.03.013

Kilmer, SD. The isolation and identification of lysergic acid diethylamide (LSD) from sugar cubes and a liquid substrate. J. Forensic Sci., 1 May 1994, 39 (3), 860–862. 271 kB. https://doi.org/10.1520/JFS13665J #LSD spot

McDonald, P; Martin, CF; Woods, DJ; Baker, PB; Gough, TA. An analytical study of illicit lysergide. J. Forensic Sci., 1 Jan 1984, 29 (1), 120–130. 455 kB. https://doi.org/10.1520/JFS11642J

Veress, T. Study of the extraction of LSD from illicit blotters for HPLC determination. J. Forensic Sci., 1 Sep 1993, 38 (5), 1105–1110. 348 kB. https://doi.org/10.1520/JFS13514J

Gomes, MM; Dõrr, FA; Catalani, LH; Campa, A. Oxidation of lysergic acid diethylamide (LSD) by peroxidises: a new metabolic pathway. Forensic Toxicol., 1 Jul 2012, 30 (2), 87–97. 632 kB. https://doi.org/10.1007/s11419-011-0131-4

Bailey, K; Verner, D; Legault, D. Distinction of some dialkyl amides of lysergic and iso-lysergic acids from LCD. J. Assoc. Off. Anal. Chem., 1973, 56 (1), 88–99. 513 kB.

Shulgin, AT. US Chemical + Biological Testing Programme 2/2: Doctors. Dr. Alexander Shulgin, LSD Expert. 5 Apr 2016. 239 kB. Also available: 2-up, landscape layout and a less opinionated reconstruction of the original transcript.

Perez-Aguilar, JM; Shan, J; LeVine, MV; Khelashvili, G; Weinstein, H. A Functional Selectivity Mechanism at the Serotonin-2A GPCR Involves Ligand-Dependent Conformations of Intracellular Loop 2. J. Am. Chem. Soc., 12 Nov 2014, 136 (45), 16044–16054. 4.2 MB. https://doi.org/10.1021/ja508394x

Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42

Wacker, D; Wang, S; McCorvy, JD; Betz, RM; Venkatakrishnan, AJ; Levit, A; Lansu, K; Schools, ZL; Che, T; Nichols, DE; Shoichet, BK; Dror, RO; Roth, BL. Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell, 26 Jan 2017, 168 (3), 377–389.e12. 5.4 MB. https://doi.org/10.1016/j.cell.2016.12.033 Open access DOI

Chen, Q; Tesmer, JJG. A Receptor on Acid. Cell, 26 Jan 2017, 168 (3), 339–341. 588 kB. https://doi.org/10.1016/j.cell.2017.01.012

Glennon, RA; Titeler, M; McKenney, JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 17 Dec 1984, 35 (25), 2505–2511. 332 kB. https://doi.org/10.1016/0024-3205(84)90436-3 #1

Meyers, FH; Rose, AJ; Smith, DE. Incidents involving the Haight-Ashbury population and some uncommonly used drugs. J. Psychedelic Drugs, 1 Apr 1968, 1 (2), 139–146. 842 kB. https://doi.org/10.1080/02791072.1968.10524531

Turek, IS; Soskin, RA; Kurland, AA. Methylenedioxyamphetamine (MDA)–Subjective Effects. J. Psychedelic Drugs, 1 Jan 1974, 6 (1), 7–14. 3.9 MB. https://doi.org/10.1080/02791072.1974.10471499

Sherwood, JN; Stolaroff, MJ; Harman, WW. The psychedelic experience - A new concept in psychotherapy. J. Psychoactive Drugs, 1 Apr 1968, 1 (2), 96–111. 1.8 MB. https://doi.org/10.1080/02791072.1968.10524522

Brandt, SD; Kavanagh, PV; Twamley, B; Westphal, F; Elliott, SP; Wallach, J; Stratford, A; Klein, LM; McCorvy, JD; Nichols, DE; Halberstadt, AL. Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775). Drug Test. Analysis, 1 Feb 2018, 10 (2), 310-322. 1.2 MB. https://doi.org/10.1002/dta.2222

Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Analysis, 1 Jan 2018, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292

Swanson, LR. Unifying theories of psychedelic drug effects. Front. Pharmacol., 2 Mar 2018, 9 n/a. 1.7 MB. https://doi.org/10.3389/fphar.2018.00172

Nichols, DE; Grob, CS. Is LSD toxic? Forensic Sci. Int., 1 Mar 2018, 284 141–145. 415 kB. https://doi.org/10.1016/j.forsciint.2018.01.006

EMCDDA. New drugs in Europe, 2016, European Monitoring Centre for Drugs and Drug Addiction, 1 May 2017. 489 kB.

Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs). Neuropharmacology, 15 Jul 2017, n/a. 478 kB. https://doi.org/10.1016/j.neuropharm.2017.07.012 #LSD

Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #LSD

Morris, H. Underground LSD palace. Hamilton’s Pharmacopeia, 19 Oct 2012. S1 E04, 19:20. Vice 128.0 MB.

Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB.

Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476

Domino, EF; Luby, ED. Phencyclidine/Schizophrenia: One view toward the past, the other to the future. Schizophr. Bull., 1 Sep 2012, 38 (5), 914–919. 181 kB. https://doi.org/10.1093/schbul/sbs011 #LSD

Oram, M. Efficacy and Enlightenment: LSD Psychotherapy and the Drug Amendments of 1962. J. Hist. Med. Allied Sci., 1 Apr 2014, 69 (2), 221-250. 342 kB. https://doi.org/10.1093/jhmas/jrs050

Bailey, K; Grey, AA. A conformational study of lysergic acid and iso-lysergic acid dialkylamides by proton magnetic resonance spectroscopy. Can. J. Chem., 1 Dec 1972, 50 (23), 3876–3885. 342 kB. https://doi.org/10.1139/v72-611

Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9

Hermle, L; Kraehenmann, R. Experimental psychosis research and schizophrenia—Similarities and dissimilarities in psychopathology. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 313-332. 446 kB. https://doi.org/10.1007/7854_2016_460

Marek, GJ. Interactions of hallucinogens with the glutamatergic system: Permissive network effects mediated through cortical layer V pyramidal neurons. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 107-135. 1.2 MB. https://doi.org/10.1007/7854_2017_480

Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #21

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Halpern, JH; Lerner, AG; Passie, T. A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 333-360. 579 kB. https://doi.org/10.1007/7854_2016_457

Barrett, FS; Griffiths, RR. Classic hallucinogens and mystical experiences: Phenomenology and neural correlates. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 137-158. 848 kB. https://doi.org/10.1007/7854_2017_474

Bogenschutz, MP; Ross, S. Therapeutic applications of classic hallucinogens. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 361-391. 360 kB. https://doi.org/10.1007/7854_2016_464

López-Giménez, JF; González-Maeso, J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 45-73. 712 kB. https://doi.org/10.1007/7854_2017_478

Lladó-Pelfort, L; Celada, P; Riga, MS; Troyano-Rodríguez,, E. Effect of hallucinogens on neuronal activity. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 75-105. 902 kB. https://doi.org/10.1007/7854_2017_473

Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)

Speth, J; Speth, C; Kaelen, M; Schloerscheidt, AM; Feilding, A; Nutt, DJ; Carhart-Harris, RL. Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide. J. Psychopharmacol., 1 Apr 2016, 30 (4), 344-353. 415 kB. https://doi.org/10.1177/0269881116628430

Dolder, PC; Schmid, Y; Haschke, M; Rentsch, KM; Liechti, ME. Pharmacokinetics and Concentration-Effect Relationship of Oral LSD in Humans. Int. J. Neuropsychoph., 2016, 19 (1), pyv072. 771 kB. https://doi.org/10.1093/ijnp/pyv072

Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 2016, 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001

Siff, SI. Glossy visions: Coverage of LSD in popular magazines, 1954-1968. Ph. D. Thesis, Ohio University, Athens, OH, USA, 1 Nov 2008. 3.7 MB. #LSD

Martin, R. Nachweis und Bestimmung halluzinogener Wirkstoffe und ihrer Metaboliten in Körperflüssigkeiten und Haaren. Toxichem Krimtech, 1 Jan 2015, 82 (2), 123–127. 448 kB.

Jakubczyk, D; Cheng, JZ; O'Connor, SE. Biosynthesis of the ergot alkaloids. Nat. Prod. Rep., 28 Aug 2014, 31 (10), 1328-1338. 476 kB. https://doi.org/10.1039/C4NP00062E #3

Burns, L; Roxburgh, A; Bruno, R; Van Buskirk, J. Monitoring drug markets in the Internet age and the evolution of drug monitoring systems in Australia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 840-845. 113 kB. https://doi.org/10.1002/dta.1613

Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610

Merli, D; Zamboni, D; Protti, S; Pesavento, M; Profumo, A. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry. Talanta, 1 Jan 2014, 130, 456-461. 751 kB. https://doi.org/10.1016/j.talanta.2014.07.037 #1

Wilkins, C; Sweetsur, P. The impact of the prohibition of benzylpiperazine (BZP) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand. Drug Alcohol Depend., 1 Jan 2013, 127 (1-3), 72-80. 521 kB. https://doi.org/10.1016/j.drugalcdep.2012.06.014

Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #27

Titeler, M; Lyon, RA; Glennon, RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology, 1 Feb 1988, 94 (2), 213–216. 431 kB. https://doi.org/10.1007/BF00176847 #1

Szára, S. DMT at fifty. Neuropsychopharmacol. Hung., 1 Dec 2007, 9 (4), 201–205. 446 kB.

Nichols, DE. DARK classics in chemical neuroscience: Lysergic acid diethylamide (LSD). ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2331–2343. 1.1 MB. https://doi.org/10.1021/acschemneuro.8b00043

Ly, C; Greb, AC; Cameron, LP; Wong, JM; Barragan, EV; Wilson, PC; Burbach, KF; Zarandi, SS; Sood, A; Paddy, MR; Duim, WC; Dennis, MY; McAllister, AK; Ori-McKenney, KM; Gray, JA; Olson, DE. Psychedelics promote structural and functional neural plasticity. Cell Rep., 1 Jun 2018, 23 (11), 3170–3182. 6.0 MB. https://doi.org/10.1016/j.celrep.2018.05.022 #LSD

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1994; pp 74–91. 51 kB.

Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 6.9 MB.

Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB.

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB. #8a

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #33a

Anderson, GM; Castagnoli, N; Kollman, PA. Quantitative structure-activity relationships in the 2,4,5-ring-substituted phenylisopropylamines. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 199–217. 623 kB.

Nichols, DE; Weintraub, HJR; Pfister, WR; Yim, GKW. The use of rigid analogues to probe hallucinogen receptors. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 70–83. 717 kB. #3

Hoffman, AJ. Synthesis and pharmacological evaluation of N(6)-alkyl norlysergic acid N,N-diethylamide derivatives. Ph. D. Thesis, Purdue University, 1 Aug 1987. 9.3 MB. #1

Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1976; Vol. 4, pp 59–146. 3.1 MB. #I

Nichols, DE. LSD and its lysergamide cousins. Heffter Rev., 1 Jan 2001, 2 (6), 80–87. 265 kB. #LSD

Mogar, RE. Current status and future trends in psychedelic (LSD) research. J. Humanist. Psychol., 1 Oct 1965, 5 (2), 147–266. 2.7 MB. https://doi.org/10.1177/002216786500500204 #LSD

Souza, GA; Arantes, LC; Guedes, TJ; de Oliveira, AC; Marinho, PA; Muñoz, RAA; dos Santos, WTP. Voltammetric signatures of 2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamines on boron-doped diamond electrodes: Detection in blotting paper samples. Electrochem. Commun., 1 Sep 2017, 82 121–124. 748 kB. https://doi.org/10.1016/j.elecom.2017.08.001 #LSD other

Oiye, ÉN; Katayama, JMT; Fernanda Muzetti Ribeiro, M; de Oliveira, MF. Electrochemical analysis of 25H-NBOMe by square wave voltammetry. Forensic Chem., 1 Sep 2017, 5 86–90. 643 kB. https://doi.org/10.1016/j.forc.2017.07.001 #LSD other

Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, 1967. 3.9 MB. #LSD

Stafford, DT; Nichols, HS; Anderson, WH. Efficiency of capillary column gas chromatography in separating lysergic acid diethylamide (LSD) and lysergic acid methylpropylamide (LAMPA). J. Forensic Sci., 1 Jan 1984, 29 (1), 291–298. 335 kB. https://doi.org/10.1520/JFS11662J #LSD GC,MS

White, SA; Kidd, AS; Webb, KS. The determination of lysergide (LSD) in urine by high-performance liquid chromatography-isotope dilution mass spectrometry (IDMS). J. Forensic Sci., 1 Mar 1999, 44 (2), 375–379. 371 kB. https://doi.org/10.1520/JFS14467J #LSD MS,other

Halberstadt, AL; Klein, LM; Chatha, M; Valenzuela, LB; Stratford, A; Wallach, J; Nichols, DE; Brandt, SD. Pharmacological characterization of the LSD analog N-ethyl-N-cyclopropyl lysergamide (ECPLA). Psychopharmacology, 8 Oct 2018, n/a. 526 kB. https://doi.org/10.1007/s00213-018-5055-9 #LSD

Johnson, MW; Griffiths, RR; Hendricks, PS; Henningfield, JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 1 Jun 2018, n/a. 2.5 MB. https://doi.org/10.1016/j.neuropharm.2018.05.012 #LSD

Baumeister, D; Barnes, G; Giaroli, G; Tracy, D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther. Adv. Psychopharmacol., 1 Aug 2014, 4 (4), 156–169. 1.1 MB. https://doi.org/10.1177/2045125314527985 #LSD

Bakalar, JB; Grinspoon, L. Testing psychotherapies and drug therapies: The case of psychedelic drugs. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 37–52. 419 kB. https://doi.org/10.1007/978-1-4613-1485-1_3 #LSD

Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10), 1100–1111. 1.2 MB. https://doi.org/10.1021/jm00256a016 #20 other

N-Butyllysergamide
LSB · N-Butan-2-yllysergamide
LAMPA · LMP
MIPLA
l-LSD
d-iso-LSD
l-iso-LSD
(S)-LSB
(R)-LSB
12 November 2018 · Creative Commons BY-NC-SA ·