Exploring DOB. To explore a different substance…

Names:
DOB · Brolamphetamine · 4-Bromo-2,5-dimethoxyamphetamine · 2,5-Dimethoxy-4-bromoamphetamine
IUPAC name:
1-(4-Bromo-2,5-dimethoxyphenyl)propan-2-amine
ID: 62 · Formula: C11H16BrNO2 · Molecular weight: 274.154
InChI: InChI=1S/C11H16BrNO2/c1-7(13)4-8-5-11(15-3)9(12)6-10(8)14-2/h5-7H,4,13H2,1-3H3

Fenderson5555. Shulgin’s syntheses of 2,5-DMA, DOB and DOEF. 5 Dec 2011. 3657 kB.

Parrish, JC; Braden, MR; Gundy, E; Nichols, DE. Differential phospholipase C activation by phenylalkylamine serotonin 5-HT2A receptor agonists. J. Neurochem., 1 Dec 2005, 95 (6), 1575–1584. 301 kB. http://dx.doi.org/10.1111/j.1471-4159.2005.03477.x

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. http://dx.doi.org/10.1021/jm00177a017

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. http://dx.doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Delliou, D. 4-Bromo-2,5-dimethoxyamphetamine: Psychoactivity, toxic effects and analytical methods. Forensic Sci. Int., 1 May 1983, 21 (3), 259–267. 1358 kB. http://dx.doi.org/10.1016/0379-0738(83)90131-7

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1054 kB. http://dx.doi.org/10.1021/jm00082a014

Bailey, K; Gagné, D; Pike, R. Investigation and identification of the bromination products of dimethoxyamphetamines. J. Assoc. Off. Anal. Chem., 1 Jan 1976, 59 (5), 1162–1169. 1916 kB.

Rasmussen, K; Glennon, RA; Aghajanian, GK. Phenethylamine hallucinogens in the locus coeruleus: potency of action correlates with rank order of 5-HT2 binding affinity. Eur. J. Pharmacol., 2 Dec 1986, 132 (1), 79–82. 267 kB. http://dx.doi.org/10.1016/0014-2999(86)90014-2

Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5904 kB.

Ewald, AH. The 2,5-Dimethoxyamphetamines—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 1 Jan 2008. 195 kB.

Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10616 kB.

Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5475 kB.

Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. http://dx.doi.org/10.1007/s10822-010-9400-2

Nichols, DE; Snyder, SE; Oberlender, R; Johnson, MP; Huang, X. 2,3-Dihydrobenzofuran analogues of hallucinogenic phenethylamines. J. Med. Chem., 1 Jan 1991, 34 (1), 276–281. 833 kB. http://dx.doi.org/10.1021/jm00105a043

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. http://dx.doi.org/10.1016/j.forsciint.2011.11.003

Fenderson5555. DOC, DOB, DOI and DOET: Strategic considerations. 7 Sep 2013. 9468 kB.

Shannon, M; Battaglia, G; Glennon, RA; Titeler, M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). European Journal of Pharmacology, 15 Jun 1984, 102 (1), 23–29. 461 kB. http://dx.doi.org/10.1016/0014-2999(84)90333-9

Glennon, RA; McKenney, JD; Lyon, RA; Titeler, M. 5-HT1 and 5-HT2 binding characteristics of 1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane analogs. J. Med. Chem., 1 Feb 1986, 29 (2), 194–199. 919 kB. http://dx.doi.org/10.1021/jm00152a005

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. http://dx.doi.org/10.1016/0014-2999(81)90106-0

Ewald, AH; Fritschi, G; Bork, W; Maurer, HH. Designer drugs 2,5-dimethoxy-4-bromo-amphetamine (DOB) and 2,5-dimethoxy-4-bromo-methamphetamine (MDOB): studies on their metabolism and toxicological detection in rat urine using gas chromatographicmass spectrometric techniques. J. Mass Spectrom., 1 Apr 2006, 41 (4), 487–498. 244 kB. http://dx.doi.org/10.1002/jms.1007

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. http://dx.doi.org/10.1016/j.bmc.2003.10.027

Glennon, RA; Seggel, MR. Interaction of phenylisopropylamines with central 5-HT2 receptors. Analysis by quantitative structure-activity relationships. In Probing Bioactive Mechanisms; ACS Symposium Series; Magee, PS; Henry, DR; Block, JH, Eds., American Chemical Society, Washington, DC, 14 Nov 1989; Vol. 413, pp 264–280. 4445 kB. http://dx.doi.org/10.1021/bk-1989-0413.ch018

Pigott, A; Frescas, SP; McCorvy, JD; Huang, X; Roth, BL; Nichols, DE. trans-2-(2,5-Dimethoxy-4-iodophenyl)cyclopropylamine and trans-2-(2,5-dimethoxy-4-bromophenyl)cyclopropylamine as potent agonists for the 5-HT2 receptor family. Beilstein J. Org. Chem., 8 Oct 2012, 8, 1705–1709. 298 kB. http://dx.doi.org/10.3762/bjoc.8.194

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; Vol. 11, pp 243–333. 2584 kB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Runyon, SP; Mosier, PD; Roth, BL; Glennon, RA; Westkaemper, RB. Potential modes of interaction of 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives with the 5-HT2A receptor: A ligand structure-affinity relationship, receptor mutagenesis and receptor modeling investigation. J. Med. Chem., 2008, 51 (21), 6808–2828. 2229 kB. http://dx.doi.org/10.1021/jm800771x

Maher, HM; Awad, T; DeRuiter, J; Clark, CR. GC-MS and GC-IRD studies on brominated dimethoxyamphetamines: Regioisomers related to 4-Br-2,5-DMA (DOB). Drug Test. Analysis, 1 Aug 2012, 4 (7–8), 591–600. 1532 kB. http://dx.doi.org/10.1002/dta.409

McKenna, DJ; Saavedra, JM. Autoradiography of LSD and 2,5-dimethoxyphenylisopropylamine psychotomimetics demonstrates regional, specific cross-displacement in the rat brain. Eur. J. Pharmacol., 13 Oct 1987, 142 (2), 313–315. 263 kB. http://dx.doi.org/10.1016/0014-2999(87)90121-X

Kier, LB; Glennon, RA. Psychotomimetic phenalkylamines as serotonin agonists: An SAR analysis. Life Sci., 8 May 1978, 22 (18), 1589–1593. 238 kB. http://dx.doi.org/10.1016/0024-3205(78)90053-X

Antun, F; Smythies, JR; Benington, F; Morin, RD; Barfknecht, CF; Nichols, DE. Native fluorescence and hallucinogenic potency of some amphetamines. Experientia, 15 Jan 1971, 27 (1), 62–63. 248 kB. http://dx.doi.org/10.1007/BF02137743

Kanai, K; Takekawa, K; Kumamoto, T; Ishikawa, T; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol., 1 Nov 2008, 26 (2), 6–12. 406 kB. http://dx.doi.org/10.1007/s11419-008-0041-2

Nichols, DE; Barfknecht, CF; Rusterholz, DB; Benington, F; Morin, RD. Asymmetric synthesis of psychotomimetic phenylisopropylamines. J. Med. Chem., 1 Jan 1973, 16 (5), 480–483. 515 kB. http://dx.doi.org/10.1021/jm00263a013

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1767 kB. http://dx.doi.org/10.1111/j.2042-7158.1985.tb03072.x

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. http://dx.doi.org/10.1124/jpet.106.117507

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3) 364–381. 817 kB. http://dx.doi.org/10.1016/j.neuropharm.2011.01.017

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 13 Dec 2011. 1038 kB. http://dx.doi.org/10.1002/dta.413

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. http://dx.doi.org/10.1371/journal.pone.0009019

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. http://dx.doi.org/10.1002/cmdc.200800133

Nelson, DL; Lucaites, VL; Wainscott, DB; Glennon, RA. Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, 5-HT2B and 5-HT2C receptors. N-S. Arch. Pharmacol., 1 Jan 1999, 359 (1), 1–6. 66 kB. http://dx.doi.org/10.1007/PL00005315

Schultz, DM; Prescher, JA; Kidd, S; Marona-Lewicka, D; Nichols, DE; Monte, A. ‘Hybrid’ benzofuran–benzopyran congeners as rigid analogs of hallucinogenic phenethylamines. Bioorg. Med. Chem., 1 Jan 2008, 16 (11), 6242–6251. 228 kB. http://dx.doi.org/10.1016/j.bmc.2008.04.030

Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10),1100–1111. 1188 kB. http://dx.doi.org/10.1021/jm00256a016

Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. http://dx.doi.org/10.1016/j.bmc.2008.02.033

Sargent, T; Kalbhen, DA; Shulgin, AT; Stauffer, H; Kusubov, N. A potential new brain-scanning agent: 4-77Br-2,5-dimethoxyphenylisopropylamine (4-Br-DPIA). J. Nucl. Med., 1 Jan 1975, 16 (3), 243–245. 443 kB.

Shulgin, AT; Sargent, T; Naranjo, C. 4-Bromo-2,5-dimethoxyphenylisopropylamine, a new centrally active amphetamine analog. Pharmacology, 1 Jan 1971, 5 (2), 103–107. 1030 kB. http://dx.doi.org/10.1159/000136181

Barfknecht, CF; Nichols, DE. Potential psychotomimetics. Bromomethoxyamphetamines. J. Med. Chem., 1 Jan 1971, 14 (4), 370–372. 377 kB. http://dx.doi.org/10.1021/jm00286a026 Rhodium

Coutts, RT; Malicky, JL. The synthesis of some analogs of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM). Can. J. Chem., 1 Jan 1973, 51 (9), 1402–1409. 746 kB. http://dx.doi.org/10.1139/v73-210

Sargent, T; Kalbhen, DA; Shulgin, AT; Braun, G; Stauffer, H; Kusubov, N. In vivo human pharmacodynamics of the psychodysleptic 4-Br-2,5-dimethoxyphenylisopropylamine labelled with 82Br or 77Br. Neuropharmacology, 1 Jan 1975, 14 (3), 165–174. 1157 kB. http://dx.doi.org/10.1016/0028-3908(75)90001-5

Shulgin, AT. DOB and other possible prodrugs. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 3 May 2005.

Urban, JD; Clarke, WP; von Zastrow, M; Nichols, DE; Kobilka, B; Weinstein, H; Javitch, JA; Roth, BL; Christopoulos, A; Sexton, PM; Miller, KJ; . Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther., 1 Jan 2007, 320 (1), 1–13. 506 kB. http://dx.doi.org/10.1124/jpet.106.104463

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. http://dx.doi.org/10.1016/S0006-2952(97)00405-X

Shulgin, AT. Profiles of psychedelic drugs. 10. DOB. J. Psychoactive Drugs, 1 Jan 1981, 13 (1), 99. 775 kB. http://dx.doi.org/10.1080/02791072.1981.10471457

Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. http://dx.doi.org/10.1021/jm00144a009

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.

White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. http://dx.doi.org/10.1016/0027-5107(77)90210-X

Nichols, DE; Shulgin, AT; Dyer, DC. Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci., 1 Jan 1977, 21 (4), 569–576. 320 kB. http://dx.doi.org/10.1016/0024-3205(77)90099-6

Seggel, MR; Yousif, MY; Lyon, RA; Titeler, M; Roth, BL; Suba, EA; Glennon, RA. A structure-affinity study of the binding of 4-substituted analogues of 1-(2,5-dimethoxyphenyl)-2-aminopropane at 5-HT2 serotonin receptors. J. Med. Chem., 1 Mar 1990, 33 (3), 1032–1036. 807 kB. http://dx.doi.org/10.1021/jm00165a023

Glennon, RA; Bondarev, ML; Khorana, N; Young, R. β-Oxygenated analogues of the 5-HT2A serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem., 1 Jan 2004, 47 (24), 6034–6041. 146 kB. http://dx.doi.org/10.1021/jm040082s

Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylaminephenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. http://dx.doi.org/10.1038/sj.bjp.0704747

McGraw, NP; Callery, PS; Castagnoli, N. In vitro stereoselective metabolism of the psychotomimetic amine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. An apparent enantiomeric interaction. J. Med. Chem., 1 Jan 1977, 20 (2), 185–189. 661 kB. http://dx.doi.org/10.1021/jm00212a001

Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. http://dx.doi.org/10.1016/S0376-8716(99)00148-9

Dyer, DC; Nichols, DE; Rusterholz, DB; Barfknecht, CF. Comparative effects of stereoisomers of psychotomimetic phenylisopropylamines. Life Sci., 1 Oct 1973, 13 (7), 885–896. 398 kB. http://dx.doi.org/10.1016/0024-3205(73)90079-9

da Costa, JL; Wang, AY; Micke, GA; Maldaner, AO; Romano, RL; Martins-Júnior, HA; Neto, ON; Magg, MF. Chemical identification of 2,5-dimethoxy-4-bromoamphetamine (DOB). Forensic Sci. Int., 20 Dec 2007, 173 (2–3), 130–136. 285 kB. http://dx.doi.org/10.1016/j.forsciint.2007.02.018

N-Me-DOB · METHYL-DOB
DOB-NB
444
443
DOB-NBOMe
DOB-NBOH
N,N-Me-DOB
DOB-OH
N-Acetyl-DOB · DOB-Ac
N-Pr-DOB
2C-B
4C-DOB
α-Carboxy-2C-B
β-MeO-DOB
β-HO-DOB
ALEPH
ALEPH-2
ALEPH-4
ALEPH-6
ALEPH-7
2,5-DMA
DOAM
DOBU
DOC
DOEF
DOET
DOI
DOM
DON
DOPR
MEM
MPM
TMA-2
DOF
DOIB
DOTB
DOSB
DONH · DOA
DOAA
Hydroxy-DOPR
DOIP
MIPM
MBM
MAM
DOHE
DOBZ
DOCPM
ALEPH-8
ALEPH-5
ALEPH-16
ALEPH-21
DOTFM
2328
DOYN
DOCN
DOPh3
2325
2329
2330
DOVI
DOAC
DOCA
DOOH
DOCONHP
DOCOE
DOCEB
DOCEP
DOOC
DONMM
DOFM
DOHM
DOHP
DONO
DOEH
M(2OP)M
M(3OP)M
MBZM
ALEPH-19
ALEPH-S-amyl
ALEPH-S-PhEt
ALEPH sulfone
DOTFE
MTFEM
MDFEM
MFEM
DOBM
DOMCl
DOCET
DOTFPR
DOHSM
DOMSM
DOMOM
DONCO
DONCOE
DONCOTFM
DOCNM
1016
4-Br-2-MA
5-Cyano-DOB
5-HOCA-DOB
TCB-2
2CB-Ind
2CLisaB
pip-2C-B
2C-B-BZP
DOB-βk
2CBecca
2CJP
BBOX
1234
1236
1237
1238
1075
bk-2C-B
938
737
4,3,5-DOB · 4-Br-3,5-DMA
m-DOB · META-DOB
2C-B-2-EtO · 2CB-2ETO
N-Me-2-Br-DMPEA
o-DOB · ORTHO-DOB
5,2,3-DOB · 5-Br-2,3-DMA
6,2,3-DOB · 6-Br-2,3-DMA
3,2,6-DOB · 3-Br-2,6-DMA
2,3,5-DOB · 2-Br-3,5-DMA
4,2,6-DOB · ψ-DOB
2C-B-M
4,2,3-DOB
3,2,4-DOB
2,3,4-DOB
3-DOB
2C-B-5-EtO
3,4,5-DOB
2,3,6-DOB
2,4,6-DOB
N-Me-DOB · METHYL-DOB
DOB-NB
444
443
DOB-NBOMe
DOB-NBOH
N,N-Me-DOB
DOB-OH
N-Acetyl-DOB · DOB-Ac
N-Pr-DOB
2C-B
4C-DOB
α-Carboxy-2C-B
β-MeO-DOB
β-HO-DOB
ALEPH
ALEPH-2
ALEPH-4
ALEPH-6
ALEPH-7
2,5-DMA
DOAM
DOBU
DOC
DOEF
DOET
DOI
DOM
DON
DOPR
MEM
MPM
TMA-2
DOF
DOIB
DOTB
DOSB
DONH · DOA
DOAA
Hydroxy-DOPR
DOIP
MIPM
MBM
MAM
DOHE
DOBZ
DOCPM
ALEPH-8
ALEPH-5
ALEPH-16
ALEPH-21
DOTFM
2328
DOYN
DOCN
DOPh3
2325
2329
2330
DOVI
DOAC
DOCA
DOOH
DOCONHP
DOCOE
DOCEB
DOCEP
DOOC
DONMM
DOFM
DOHM
DOHP
DONO
DOEH
M(2OP)M
M(3OP)M
MBZM
ALEPH-19
ALEPH-S-amyl
ALEPH-S-PhEt
ALEPH sulfone
DOTFE
MTFEM
MDFEM
MFEM
DOBM
DOMCl
DOCET
DOTFPR
DOHSM
DOMSM
DOMOM
DONCO
DONCOE
DONCOTFM
DOCNM
1016
4-Br-2-MA
5-Cyano-DOB
5-HOCA-DOB
TCB-2
2CB-Ind
2CLisaB
pip-2C-B
2C-B-BZP
DOB-βk
2CBecca
2CJP
BBOX
1234
1236
1237
1238
1075
bk-2C-B
938
737
4,3,5-DOB · 4-Br-3,5-DMA
m-DOB · META-DOB
2C-B-2-EtO · 2CB-2ETO
N-Me-2-Br-DMPEA
o-DOB · ORTHO-DOB
5,2,3-DOB · 5-Br-2,3-DMA
6,2,3-DOB · 6-Br-2,3-DMA
3,2,6-DOB · 3-Br-2,6-DMA
2,3,5-DOB · 2-Br-3,5-DMA
4,2,6-DOB · ψ-DOB
2C-B-M
4,2,3-DOB
3,2,4-DOB
2,3,4-DOB
3-DOB
2C-B-5-EtO
3,4,5-DOB
2,3,6-DOB
2,4,6-DOB
3 December 2016 · Creative Commons BY-NC-SA ·