Synthetic Cannabinoids: JWH-018 4-Alkyl Substitutions

Ah, JWH-018. Trivial to synthesize, highly potent, and a formerly legal substitute for the world’s most popular contraband drug. No wonder it reached the heights of popularity it did, and no wonder that labs are currently scrambling to replace it. And just like in corporate pharmacology, small substitutions can create not only a new compound, but a new cash cow free of previous legal restraints.

So let’s look at the naphthyl ring of JWH-018 in particular, and number our possible substitution sites for clarity. We could try many approaches at many positions, but suppose we limit ourselves to the 4-position. The halogens are a possibility (JWH-398 can be thought of JWH-018 with a chlorine substituted here), but let’s try some alkyl chains and see if they come up winners.

For reference, JWH-018 has binding affinities of 9.00 nM at CB1 and 2.94 nM at CB2. If we were a lab, we’d be looking for higher potency compounds (lower binding affinities) since increased attention from law enforcement means the only rational choice is to pack as much punch as you can in the smallest package for transport. It might be nice to try to search for compounds with the most pleasant effects, but that seems to be rather idealistic in the cold light of this new day.

JWH-122 (CB1 Ki = 0.69 nM, CB2 Ki = 1.20 nM)
Our first try, and things are looking good. A drastic increase in potency based on binding affinities, slightly smaller doses compared to JWH-018, and similar effects. Duration also appears to increase with this substitution, making it an apparent winner all around.
JWH-210 (CB1 Ki = 0.46 nM, CB2 Ki = 0.69 nM)
Increasing the alkyl chain length by a carbon appears to produce little drastic change. A similar duration to JWH-122, with perhaps a slight decrease in potency. A stimulating and slightly trippy headspace.
JWH-182 (CB1 Ki = 0.65nM, CB2 Ki = 1.10 nM)
Should be quite potent based on binding affinities, but is not widely distributed in the marketplace. Perhaps perceived qualitative potency in human subjects decreases as the 4-alkyl chain length increases as seen in the move from JWH-122 to JWH-210, making this compound not economical to produce at this point in time.

Related Posts:

  1. No comments yet.

  1. December 31st, 2010