Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #LSD
Pfaff, RC; Huang, X; Marona-Lewicka, D; Oberlender, R; Nichols, DE. Lysergamides revisited. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 52–73. 181 kB. #LSD
Huang, X; Marona-Lewicka, D; Pfaff, RC; Nichols, DE. Drug discrimination and receptor binding studies of N-isopropyl lysergamide derivatives. Pharmacol. Biochem. Behav., 1 Mar 1994, 47 (3), 667–673. 650 kB. https://doi.org/10.1016/0091-3057(94)90172-4 #LSD
Hoffman, AJ; Nichols, DE. Synthesis and LSD-like discriminative stimulus properties in a series of N(6)-alkyl norlysergic acid N,N-diethylamide derivatives. J. Med. Chem., 1 Sep 1985, 28 (9), 1252–1255. 583 kB. https://doi.org/10.1021/jm00147a022 #1 NMR
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Schindler, EAD; Dave, KD; Smolock, EM; Aloyo, VJ; Harvey, JA. Serotonergic and dopaminergic distinctions in the behavioral pharmacology of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Pharmacol. Biochem. Behav., 1 Mar 2012, 101 (1), 69–76. 722 kB. https://doi.org/10.1016/j.pbb.2011.12.002
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Meyers-Riggs, B. Non-LSD ergoloids. countyourculture, countyourculture: rational exploration of the underground, 1 Dec 2011.
Urban, JD; Clarke, WP; von Zastrow, M; Nichols, DE; Kobilka, B; Weinstein, H; Javitch, JA; Roth, BL; Christopoulos, A; Sexton, PM; Miller,, KJ. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther., 1 Jan 2007, 320 (1), 1–13. 567 kB. https://doi.org/10.1124/jpet.106.104463
Marona-Lewicka, D; Kurrasch-Orbaugh, DM; Selken, JR; Cumbay, MG; Lisnicchia, JG; Nichols, DE. Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine 1A receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology, 1 Oct 2002, 164 (1), 93–107. 293 kB. https://doi.org/10.1007/s00213-002-1141-z
Wurst, M; Kysilka, R; Flieger, M. Psychoactive tryptamines from Basidiomycetes. Folia Microbiol., 1 Feb 2002, 47 (1), 3–27. 3.1 MB. https://doi.org/10.1007/BF02818560 #LSD
Marona-Lewicka, D; Nichols, CD; Nichols, DE. An animal model of schizophrenia based on chronic LSD administration: Old idea, new results. Neuropharmacology, 1 Sep 2011, 61 (3), 503–512. 803 kB. https://doi.org/10.1016/j.neuropharm.2011.02.006
Lieberman, JA; Mailman, RB; Duncan, G; Sikich, L; Chakos, M; Nichols, DE; Kraus, JE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol. Psychiat., 1 Dec 1998, 44 (11), 1099–1117. 154 kB. https://doi.org/10.1016/S0006-3223(98)00187-5
Nichols, DE. Structural correlation between apomorphine and LSD: Involvement of dopamine as well as serotonin in the actions of hallucinogens. J. Theor. Biol., 1 Jun 1976, 59 (1), 167–177. 614 kB. https://doi.org/10.1016/S0022-5193(76)80030-6
Vollenweider, FX; Kometer, M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat. Rev. Neurosci., 1 Sep 2010, 11 (9), 642–651. 588 kB. https://doi.org/10.1038/nrn2884
Abramson, HA. Lysergic acid diethylamide (LSD-25) XXXI. Comparison by questionnaire of psychotomimetic activity of congeners on normal subjects and drug addicts. Br. J. Psychiatry, 1 Jul 1960, 106 (444), 1120–1123. 425 kB. https://doi.org/10.1192/bjp.106.444.1120
Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #LSD
Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.
Shulgin, AT. Profiles of psychedelic drugs. 9. LSD. J. Psychedelic Drugs, 1 Apr 1980, 12 (2), 173–174. 1.7 MB. https://doi.org/10.1080/02791072.1980.10471571
Oberlender, R; Pfaff, RC; Johnson, MP; Huang, X; Nichols, DE. Stereoselective LSD-like activity in d-lysergic acid amides of R- and S-2-aminobutane. J. Med. Chem., 1 Jan 1992, 35 (2), 203–211. 1.1 MB. https://doi.org/10.1021/jm00080a001 #1 NMR,IR,other
Watts, VJ; Mailman, RB; Lawler, CP; Neve, KA; Nichols, DE. LSD and structural analogs: Pharmacological evaluation at D1 dopamine receptors. Psychopharmacology, 1 Apr 1995, 118 (4), 401–409. 1.4 MB. https://doi.org/10.1007/BF02245940 #LSD
Passie, T; Halpern, JH; Stichtenoth, DO; Emrich, HM; Hintzen, A. The pharmacology of lysergic acid diethylamide: A review. CNS Neurosci. Ther., 1 Jan 2008, 14 (4), 295–314. 690 kB. https://doi.org/10.1111/j.1755-5949.2008.00059.x
Moreno, JL; Holloway, T; Albizu, L; Sealfon, SC; González-Maeso, J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci. Lett., 15 Apr 2011, 493 (3), 76–79. 196 kB. https://doi.org/10.1016/j.neulet.2011.01.046
Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.
Gorodetzky, CW; Isbell, H. A comparison of 2,3-dihydro-lysergic acid diethylamide with LSD-25. Psychopharmacology, 1 May 1964, 6 (3), 229–233. 317 kB. https://doi.org/10.1007/BF00404013 #LSD-25
Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #31 NMR
Ginzel, KH; Mayer-Gross, W. Prevention of psychological effects of d-lysergic acid diethylamide (LSD 25) by its 2-brom derivative (BOL 148). Nature, 28 Jul 1956, 178 (4526), 210. 129 kB. https://doi.org/10.1038/178210a0 #LSD 25
Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B #LSD
Fenderson5555. A more modern lysergic acid synthesis. , 28 Jun 2011. . Fenderson5555 3.3 MB.
Fenderson5555. Total synthesis of lysergic acid. , 25 Jun 2011. . Fenderson5555 4.4 MB.
Green, AR. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK. Br. J. Pharmacol., 1 Aug 2008, 1554 (8), 1583–1599. 418 kB. https://doi.org/10.1038/bjp.2008.207
Nichols, DE. Potential psychotomimetics: Bromomethoxyamphetamines and structural congeners of lysergic acid. Ph. D. Thesis, University of Iowa, Iowa City, IA, 1 May 1973. 13.0 MB. #2 NMR,IR,other
Paulke, A; Kremer, C; Wunder, C; Achenbach, J; Djahanschiri, B; Elias, A; Schwed, JS; Hübner, H; Gmeiner, P; Proschak, E; Toennes, SW; Stark, H. Argyreia nervosa (Burm. f.): Receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches. J. Ethnopharmacol., 9 Jul 2013, 148 (2), 492–497. 555 kB. https://doi.org/10.1016/j.jep.2013.04.044
McKenna, DJ; Saavedra, JM. Autoradiography of LSD and 2,5-dimethoxyphenylisopropylamine psychotomimetics demonstrates regional, specific cross-displacement in the rat brain. Eur. J. Pharmacol., 13 Oct 1987, 142 (2), 313–315. 263 kB. https://doi.org/10.1016/0014-2999(87)90121-X
Schindler, EAD. Behavioral and biochemical distinctions in the pharmacology of two common hallucinogens. Ph. D. Thesis, Drexel University, Philadelphia, PA, USA, 1 Apr 2010. 5.9 MB.
Ang, RLL. Molecular basis of the action of hallucinogens. Ph. D. Thesis, New York University, New York, NY, USA, . 2.4 MB. #LSD
Reissig, CJ. The 5-HT1A receptor and hallucinogens. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 7 Sep 2006. 943 kB.
Regina, MJ. Biochemical changes associated with serotonergic hallucinogens. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 1 Jun 2005. 3.4 MB.
Martin, DA; Marona-Lewicka, D; Nichols, DE; Nichols, CD. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology, 1 Aug 2014, 83, 1–8. 1.2 MB. https://doi.org/10.1016/j.neuropharm.2014.03.013
McDonald, P; Martin, CF; Woods, DJ; Baker, PB; Gough, TA. An analytical study of illicit lysergide. J. Forensic Sci., 1 Jan 1984, 29 (1), 120–130. 455 kB. https://doi.org/10.1520/JFS11642J LC,other
Veress, T. Study of the extraction of LSD from illicit blotters for HPLC determination. J. Forensic Sci., 1 Sep 1993, 38 (5), 1105–1110. 348 kB. https://doi.org/10.1520/JFS13514J LC
Gomes, MM; Dõrr, FA; Catalani, LH; Campa, A. Oxidation of lysergic acid diethylamide (LSD) by peroxidises: a new metabolic pathway. Forensic Toxicol., 1 Jul 2012, 30 (2), 87–97. 632 kB. https://doi.org/10.1007/s11419-011-0131-4
Bailey, K; Verner, D; Legault, D. Distinction of some dialkyl amides of lysergic and iso-lysergic acids from LCD. J. Assoc. Off. Anal. Chem., , 56 (1), 88–99. 513 kB.
Shulgin, AT. US Chemical + Biological Testing Programme 2/2: Doctors. Dr. Alexander Shulgin, LSD Expert. 5 Apr 2016. 239 kB. Also available: 2-up, landscape layout and a less opinionated reconstruction of the original transcript.
Perez-Aguilar, JM; Shan, J; LeVine, MV; Khelashvili, G; Weinstein, H. A Functional Selectivity Mechanism at the Serotonin-2A GPCR Involves Ligand-Dependent Conformations of Intracellular Loop 2. J. Am. Chem. Soc., 12 Nov 2014, 136 (45), 16044–16054. 4.2 MB. https://doi.org/10.1021/ja508394x
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42
Wacker, D; Wang, S; McCorvy, JD; Betz, RM; Venkatakrishnan, AJ; Levit, A; Lansu, K; Schools, ZL; Che, T; Nichols, DE; Shoichet, BK; Dror, RO; Roth, BL. Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell, 26 Jan 2017, 168 (3), 377–389.e12. 5.4 MB. https://doi.org/10.1016/j.cell.2016.12.033
Chen, Q; Tesmer, JJG. A Receptor on Acid. Cell, 26 Jan 2017, 168 (3), 339–341. 588 kB. https://doi.org/10.1016/j.cell.2017.01.012
Glennon, RA; Titeler, M; McKenney, JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 17 Dec 1984, 35 (25), 2505–2511. 332 kB. https://doi.org/10.1016/0024-3205(84)90436-3 #1
Meyers, FH; Rose, AJ; Smith, DE. Incidents involving the Haight-Ashbury population and some uncommonly used drugs. J. Psychedelic Drugs, 1 Apr 1968, 1 (2), 139–146. 842 kB. https://doi.org/10.1080/02791072.1968.10524531
Turek, IS; Soskin, RA; Kurland, AA. Methylenedioxyamphetamine (MDA)–Subjective Effects. J. Psychedelic Drugs, 1 Jan 1974, 6 (1), 7–14. 3.9 MB. https://doi.org/10.1080/02791072.1974.10471499
Sherwood, JN; Stolaroff, MJ; Harman, WW. The psychedelic experience - A new concept in psychotherapy. J. Psychoactive Drugs, 1 Apr 1968, 1 (2), 96–111. 1.8 MB. https://doi.org/10.1080/02791072.1968.10524522
Brandt, SD; Kavanagh, PV; Twamley, B; Westphal, F; Elliott, SP; Wallach, J; Stratford, A; Klein, LM; McCorvy, JD; Nichols, DE; Halberstadt, AL. Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775). Drug Test. Anal., 1 Feb 2018, 10 (2), 310-322. 1.2 MB. https://doi.org/10.1002/dta.2222
Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Anal., 1 Jan 2018, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292
Brandt, SD; Kavanagh, PV; Westphal, F; Stratford, A; Elliott, SP; Dowling, G; Wallach, J; Halberstadt, AL. Return of the lysergamides. Part V: Analytical and behavioural characterization of 1‐butanoyl‐d‐lysergic acid diethylamide (1B‐LSD). Drug Test. Anal., 13 May 2019, 11 (8), 1122-1133. 1.5 MB. https://doi.org/10.1002/dta.2613 #LSD LC,MS,NMR,IR,UV
EMCDDA. New drugs in Europe, 2016, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2017. 489 kB.
Swanson, LR. Unifying theories of psychedelic drug effects. Front. Pharmacol., 2 Mar 2018, 9 (172). 1.7 MB. https://doi.org/10.3389/fphar.2018.00172
Nichols, DE; Grob, CS. Is LSD toxic? Forensic Sci. Int., 1 Mar 2018, 284, 141–145. 415 kB. https://doi.org/10.1016/j.forsciint.2018.01.006
Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs). Neuropharmacology, 15 May 2018, 134 (A), 141-148. 478 kB. https://doi.org/10.1016/j.neuropharm.2017.07.012 #LSD
Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99, 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #LSD
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #Table 4.3
Morris, H. Underground LSD palace. Hamilton’s Pharmacopeia, 19 Oct 2012. S1 E04, 19:20. Vice 128.0 MB.
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Domino, EF; Luby, ED. Phencyclidine/Schizophrenia: One view toward the past, the other to the future. Schizophr. Bull., 1 Sep 2012, 38 (5), 914–919. 181 kB. https://doi.org/10.1093/schbul/sbs011 #LSD
Bailey, K; Grey, AA. A conformational study of lysergic acid and iso-lysergic acid dialkylamides by proton magnetic resonance spectroscopy. Can. J. Chem., 1 Dec 1972, 50 (23), 3876–3885. 342 kB. https://doi.org/10.1139/v72-611 NMR
Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9 TLC
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #21
Hermle, L; Kraehenmann, R. Experimental psychosis research and schizophrenia—Similarities and dissimilarities in psychopathology. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 313-332. 446 kB. https://doi.org/10.1007/7854_2016_460
Marek, GJ. Interactions of hallucinogens with the glutamatergic system: Permissive network effects mediated through cortical layer V pyramidal neurons. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 107-135. 1.2 MB. https://doi.org/10.1007/7854_2017_480
Speth, J; Speth, C; Kaelen, M; Schloerscheidt, AM; Feilding, A; Nutt, DJ; Carhart-Harris, RL. Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide. J. Psychopharmacol., 1 Apr 2016, 30 (4), 344-353. 415 kB. https://doi.org/10.1177/0269881116628430
Dolder, PC; Schmid, Y; Haschke, M; Rentsch, KM; Liechti, ME. Pharmacokinetics and Concentration-Effect Relationship of Oral LSD in Humans. Int. J. Neuropsychoph., 1 Jan 2016, 19 (1), pyv072. 771 kB. https://doi.org/10.1093/ijnp/pyv072
Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 1 Aug 2016, 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001
López-Giménez, JF; González-Maeso, J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 45-73. 712 kB. https://doi.org/10.1007/7854_2017_478
Barrett, FS; Griffiths, RR. Classic hallucinogens and mystical experiences: Phenomenology and neural correlates. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 137-158. 848 kB. https://doi.org/10.1007/7854_2017_474
Lladó-Pelfort, L; Celada, P; Riga, MS; Troyano-Rodríguez,, E. Effect of hallucinogens on neuronal activity. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 75-105. 902 kB. https://doi.org/10.1007/7854_2017_473
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Bogenschutz, MP; Ross, S. Therapeutic applications of classic hallucinogens. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 361-391. 360 kB. https://doi.org/10.1007/7854_2016_464
Halpern, JH; Lerner, AG; Passie, T. A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 333-360. 579 kB. https://doi.org/10.1007/7854_2016_457
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
Siff, SI. Glossy visions: Coverage of LSD in popular magazines, 1954-1968. Ph. D. Thesis, Ohio University, Athens, OH, USA, 1 Nov 2008. 3.7 MB. #LSD
Martin, R. Nachweis und Bestimmung halluzinogener Wirkstoffe und ihrer Metaboliten in Körperflüssigkeiten und Haaren. Toxichem Krimtech, 1 Jan 2015, 82 (2), 123–127. 448 kB.
Jakubczyk, D; Cheng, JZ; O'Connor, SE. Biosynthesis of the ergot alkaloids. Nat. Prod. Rep., 28 Aug 2014, 31 (10), 1328-1338. 476 kB. https://doi.org/10.1039/C4NP00062E #3
Burns, L; Roxburgh, A; Bruno, R; Van Buskirk, J. Monitoring drug markets in the Internet age and the evolution of drug monitoring systems in Australia. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 840-845. 113 kB. https://doi.org/10.1002/dta.1613
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
Oram, M. Efficacy and Enlightenment: LSD Psychotherapy and the Drug Amendments of 1962. J. Hist. Med. Allied Sci., 1 Apr 2014, 69 (2), 221-250. 342 kB. https://doi.org/10.1093/jhmas/jrs050
Merli, D; Zamboni, D; Protti, S; Pesavento, M; Profumo, A. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry. Talanta, 1 Jan 2014, 130, 456-461. 751 kB. https://doi.org/10.1016/j.talanta.2014.07.037 #1
Wilkins, C; Sweetsur, P. The impact of the prohibition of benzylpiperazine (BZP) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand. Drug Alcohol Depend., 1 Jan 2013, 127 (1-3), 72-80. 521 kB. https://doi.org/10.1016/j.drugalcdep.2012.06.014
Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #27 LC,MS,NMR,IR
Szára, S. DMT at fifty. Neuropsychopharmacol. Hung., 1 Dec 2007, 9 (4), 201–205. 446 kB.
Titeler, M; Lyon, RA; Glennon, RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology, 1 Feb 1988, 94 (2), 213–216. 431 kB. https://doi.org/10.1007/BF00176847 #1
Nichols, DE. DARK classics in chemical neuroscience: Lysergic acid diethylamide (LSD). ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2331–2343. 1.1 MB. https://doi.org/10.1021/acschemneuro.8b00043
Ly, C; Greb, AC; Cameron, LP; Wong, JM; Barragan, EV; Wilson, PC; Burbach, KF; Zarandi, SS; Sood, A; Paddy, MR; Duim, WC; Dennis, MY; McAllister, AK; Ori-McKenney, KM; Gray, JA; Olson, DE. Psychedelics promote structural and functional neural plasticity. Cell Rep., 1 Jun 2018, 23 (11), 3170–3182. 6.0 MB. https://doi.org/10.1016/j.celrep.2018.05.022 #LSD
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB.
Nichols, DE; Weintraub, HJR; Pfister, WR; Yim, GKW. The use of rigid analogues to probe hallucinogen receptors. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 70–83. 717 kB. #3
Anderson, GM; Castagnoli, N; Kollman, PA. Quantitative structure-activity relationships in the 2,4,5-ring-substituted phenylisopropylamines. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 199–217. 623 kB.
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #33a
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB.
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #8a
Hoffman, AJ. Synthesis and pharmacological evaluation of N(6)-alkyl norlysergic acid N,N-diethylamide derivatives. Ph. D. Thesis, Purdue University, 1 Aug 1987. 9.3 MB. #1 NMR
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #I
Mogar, RE. Current status and future trends in psychedelic (LSD) research. J. Humanist. Psychol., 1 Oct 1965, 5 (2), 147–266. 2.7 MB. https://doi.org/10.1177/002216786500500204 #LSD
Nichols, DE. LSD and its lysergamide cousins. Heffter Rev., 1 Jan 2001, 2 (6), 80–87. 265 kB. #LSD
Souza, GA; Arantes, LC; Guedes, TJ; de Oliveira, AC; Marinho, PA; Muñoz, RAA; dos Santos, WTP. Voltammetric signatures of 2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamines on boron-doped diamond electrodes: Detection in blotting paper samples. Electrochem. Commun., 1 Sep 2017, 82, 121–124. 748 kB. https://doi.org/10.1016/j.elecom.2017.08.001 #LSD other
Oiye, ÉN; Katayama, JMT; Fernanda Muzetti Ribeiro, M; de Oliveira, MF. Electrochemical analysis of 25H-NBOMe by square wave voltammetry. Forensic Chem., 1 Sep 2017, 5, 86–90. 643 kB. https://doi.org/10.1016/j.forc.2017.07.001 #LSD other
Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, . 3.9 MB. #LSD
Stafford, DT; Nichols, HS; Anderson, WH. Efficiency of capillary column gas chromatography in separating lysergic acid diethylamide (LSD) and lysergic acid methylpropylamide (LAMPA). J. Forensic Sci., 1 Jan 1984, 29 (1), 291–298. 335 kB. https://doi.org/10.1520/JFS11662J #LSD GC,MS
White, SA; Kidd, AS; Webb, KS. The determination of lysergide (LSD) in urine by high-performance liquid chromatography-isotope dilution mass spectrometry (IDMS). J. Forensic Sci., 1 Mar 1999, 44 (2), 375–379. 371 kB. https://doi.org/10.1520/JFS14467J #LSD MS,other
Kilmer, SD. The isolation and identification of lysergic acid diethylamide (LSD) from sugar cubes and a liquid substrate. J. Forensic Sci., 1 May 1994, 39 (3), 860–862. 271 kB. https://doi.org/10.1520/JFS13665J #LSD spot
Halberstadt, AL; Klein, LM; Chatha, M; Valenzuela, LB; Stratford, A; Wallach, J; Nichols, DE; Brandt, SD. Pharmacological characterization of the LSD analog N-ethyl-N-cyclopropyl lysergamide (ECPLA). Psychopharmacology, 8 Oct 2018, 236 (2), 799-808. 526 kB. https://doi.org/10.1007/s00213-018-5055-9 #LSD
Johnson, MW; Griffiths, RR; Hendricks, PS; Henningfield, JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 1 Nov 2018, 142, 143-166. 2.5 MB. https://doi.org/10.1016/j.neuropharm.2018.05.012 #LSD
Baumeister, D; Barnes, G; Giaroli, G; Tracy, D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther. Adv. Psychopharmacol., 1 Aug 2014, 4 (4), 156–169. 1.1 MB. https://doi.org/10.1177/2045125314527985 #LSD
Bakalar, JB; Grinspoon, L. Testing psychotherapies and drug therapies: The case of psychedelic drugs. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 37–52. 419 kB. https://doi.org/10.1007/978-1-4613-1485-1_3 #LSD
Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10), 1100–1111. 1.2 MB. https://doi.org/10.1021/jm00256a016 #20 other
Chambers, SA; DeSousa, JM; Huseman, ED; Townsend, SD. The DARK side of total synthesis: Strategies and tactics in psychoactive drug production. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2307–2330. 8.1 MB. https://doi.org/10.1021/acschemneuro.7b00528 #164
Passie, T; Brandt, SD. Self-experiments with psychoactive substances: A historical perspective. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 69-110. 563 kB. https://doi.org/10.1007/164_2018_177 #LSD
Cameron, LP; Olson, DE. DARK classics in chemical neuroscience: N,N-Dimethyltryptamine (DMT). ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2344–2357. 1.4 MB. https://doi.org/10.1021/acschemneuro.8b00101 #12
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #LSD
Wagmann, L; Richter, LHJ; Kehl, T; Wack, F; Bergstrand, MP; Brandt, SD; Stratford, A; Maurer, HH; Meyer, MR. In vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures. Anal. Bioanal. Chem., 1 Jul 2019, 411 (19), 4751-4763. 3.8 MB. https://doi.org/10.1007/s00216-018-1558-9 #1 MS
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S2 Ergolines LSD
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #21 In German. MS,NMR,IR
McCorvy, JD. Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: Insights into the molecular actions of psychedelics. Ph. D. Thesis, Purdue University, 1 Jan 2012. 3.9 MB. #LSD
Eshleman, AJ; Wolfrum, KM; Reed, JF; Kim, SO; Johnson, RA; Janowsky, A. Neurochemical pharmacology of psychoactive substituted N-benzylphenethylamines: High potency agonists at 5-HT2A receptors. Biochem. Pharmacol., 1 Dec 2018, 158 27–34. 790 kB. https://doi.org/10.1016/j.bcp.2018.09.024 #LSD
Grumann, C; Henkel, K; Stratford, A; Hermanns-Clausen, M; Passie, T; Brandt, SD; Auwärter, V. Validation of an LC-MS/MS method for the quantitative analysis of 1P-LSD and its tentative metabolite LSD in fortified urine and serum samples including stability tests for 1P-LSD under different storage conditions. J. Pharm. Biomed. Anal., 1 Sep 2019, 174, 270–276. 726 kB. https://doi.org/10.1016/j.jpba.2019.05.062 #LSD LC,MS
Clark, CC. The differentiation of lysergic acid diethylamide (LSD) from N-methyl-N-propyl and N-butyl amides of lysergic acid. J. Forensic Sci., 1 May 1989, 34 (3), 532–546. 445 kB. https://doi.org/10.1520/JFS12674J #IA LC,MS,TLC
Kang, S; Johnson, CL; Green, JP. Theoretical studies on the conformations of psilocin and mescaline. Mol. Pharmacol., 1 Sep 1973, 9 (5), 640–648. 6.9 MB. #Lysergic acid diethylamide other
Oberlender, RA. Stereoselective aspects of hallucinogenic drug action and drug discrimination studies of entactogens. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 May 1989. 8.2 MB. #1, LSD MS,NMR,IR,other
Westphal, F; Junge, T. Massenspektrometrische Unterscheidung von LSD, LAMPA und anderen LSD-Isobaren. Toxichem Krimtech, 1 Jan 2014, 81 (3), 129–135. 444 kB. #1, LSD MS
Monte, AP. Structure-activity relationships of hallucinogens: Design, synthesis, and pharmacological evaluation of a series of conformationally restricted phenethylamines. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Aug 1995. 10.7 MB. #LSD MS,NMR
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #LSD
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 (896). 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #LSD
Poulie, CBM; Jensen, AA; Halberstadt, AL; Kristensen, JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem. Neurosci., 2 Dec 2020, 11 (23), 3860-3869. 860 kB. https://doi.org/10.1021/acschemneuro.9b00528 #LSD
Halberstadt, AL; Chatha, M; Klein, AK; McCorvy, JD; Meyer, MR; Wagmann, L; Stratford, A; Brandt, SD. Pharmacological and biotransformation studies of 1-acyl-substituted derivatives of d-lysergic acid diethylamide (LSD). Neuropharmacology, 1 Nov 2019, 172, 107856. 923 kB. https://doi.org/10.1016/j.neuropharm.2019.107856 #LSD
Luethi, D; Widmer, R; Trachsel, D; Hoener, MC; Liechti, ME. Monoamine receptor interaction profiles of 4-aryl-substituted 2,5-dimethoxyphenethylamines (2C-BI derivatives). Eur. J. Pharmacol., 1 Jul 2019, 855, 103–111. 983 kB. https://doi.org/10.1016/j.ejphar.2019.05.014 #LSD
Sadzot, B; Baraban, JM; Glennon, RA; Lyon, RA; Leonhardt, S; Jan, C; Titeler, M. Hallucinogenic drug interactions at human brain 5-HT2 receptors: implications for treating LSD-induced hallucinogenesis. Psychopharmacology, 1 Aug 1989, 98 (4), 495–499. 895 kB. https://doi.org/10.1007/BF00441948 #d-LSD
Brandt, SD; Kavanagh, PV; Westphal, F; Stratford, A; Odland, AU; Klein, AK; Dowling, G; Dempster, NM; Wallach, J; Passie, T; Halberstadt, AL. Return of the lysergamides. Part VI: Analytical and behavioural characterization of 1-cyclopropanoyl-d-lysergic acid diethylamide (1CP-LSD). Drug Test. Anal., 16 Mar 2020, 12 (6), 812-826. 16.3 MB. https://doi.org/10.1002/dta.2789 #LSD GC,LC,MS,NMR,IR
Fenderson5555. Total synthesis of lysergic acid via Pd-catalysed domino cyclizations. , 4 Dec 2011. . Fenderson5555 6.4 MB.
Grumann, C; Henkel, K; Brandt, SD; Stratford, A; Passie, T; Auwärter, V. Pharmacokinetics and subjective effects of 1P‐LSD in humans after oral and intravenous administration. Drug Test. Anal., 2 Jun 2020, 12 (8), 1144-1153. 908 kB. https://doi.org/10.1002/dta.2821 #LSD
Tanaka, R; Kawamura, M; Hakamatsuka, T; Kikura-Hanajiri, R. Identification and analysis of LSD derivatives in illegal products as paper sheet. Yakugaku Zasshi, 1 Jan 2020, 140 (5), 739–750. 932 kB. https://doi.org/10.1248/yakushi.19-00230 #1 MS,NMR,UV,other
Elbardisy, HM; Foster, CW; Marron, J; Mewis, RE; Sutcliffe, OB; Belal, TS; Talaat, W; Daabees, HG; Banks, CE. Quick test for determination of N-bombs (Phenethylamine derivatives, NBOMe) using high-performance liquid chromatography: A comparison between photodiode array and amperometric detection. ACS Omega, 10 Sep 2019, 4 (11), 14439–14450. 3.4 MB. https://doi.org/10.1021/acsomega.9b01366 #3 LC
Pottie, E; Cannaert, A; Stove, CP. In vitro structure–activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch. Toxicol., 1 Oct 2020, 94 (10), 3449–3460. 919 kB. https://doi.org/10.1007/s00204-020-02836-w #LSD
Flanagan, TW; Billac, GB; Landry, AN; Sebastian, MN; Cormier, SA; Nichols, CD. Structure–activity relationship analysis of psychedelics in a rat model of asthma reveals the anti-inflammatory pharmacophore. ACS Pharmacol. Transl. Sci., 9 Apr 2021, 4 (2), 488-502. 13.3 MB. https://doi.org/10.1021/acsptsci.0c00063 #LSD
Niwaguchi, T; Inoue, T. Photodecomposition of lysergic acid diethylamide (LSD). Proc. Japan Acad., 1 Jan 1971, 47 (10), 747–750. 351 kB. https://doi.org/10.2183/pjab1945.47.747 #LSD MS,UV,TLC
Sherwood, AM; Claveau, R; Lancelotta, R; Kaylo, KW; Lenoch, K. Synthesis and characterization of 5-MeO-DMT succinate for clinical use. ACS Omega, 15 Dec 2020, 5 (49), 32067–32075. 3.2 MB. https://doi.org/10.1021/acsomega.0c05099 #3 MS,NMR
Tanaka, R; Kawamura, M; Hakamatsuka, T; Kikura-Hanajiri, R. Identification of LSD derivatives, 1cP-LSD, MIPLA and 1B-LSD in illegal products as paper sheet. Yakugaku Zasshi, 1 Nov 2020, 140 (11), 1405–1413. 606 kB. https://doi.org/10.1248/yakushi.20-00124 #1 MS,NMR,UV
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #LSD
Kim, K; Che, T; Panova, O; DiBerto, JF; Lyu, J; Krumm, BE; Wacker, D; Robertson, MJ; Seven, AB; Nichols, DE; Shoichet, BK; Skiniotis, G; Roth, BL. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell, 1 Sep 2020, 182 (6), 1574-1588.e19. 12.2 MB. https://doi.org/10.1016/j.cell.2020.08.024 #LSD
Folen, VA. X-Ray powder diffraction data for some drugs, excipients, and adulterants in illicit samples. J. Forensic Sci., 1 Apr 1975, 20 (2), 348–372. 502 kB. https://doi.org/10.1520/JFS10282J #40 other
Åstrand, A; Guerrieri, D; Vikingsson, S; Kronstrand, R; Green, H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci. Int., 1 Dec 2020, 317, 110553. 1.7 MB. https://doi.org/10.1016/j.forsciint.2020.110553 #LSD
Brandt, SD; Kavanagh, PV; Westphal, F; Stratford, A; Blanckaert, P; Dowling, G; Grill, M; Schwelm, HM; Auwärter, V; Chapman, SJ. Separating the wheat from the chaff: Observations on the analysis of lysergamides LSD, MIPLA, and LAMPA. Drug Test. Anal., 26 May 2021, 14 (3), 545-556. 5.8 MB. https://doi.org/10.1002/dta.3103 #LSD MS,IR
Carhart-Harris, RL; Kaelen, M; Bolstridge, M; Williams, TM; Williams, LT; Underwood, R; Feilding, A; Nutt, DJ. The paradoxical psychological effects of lysergic acid diethylamide (LSD). Psychol. Med., 1 May 2016, 46 (7), 1379–1390. 347 kB. https://doi.org/10.1017/S0033291715002901 #LSD
Nakagawasai, O; Arai, Y; Satoh, S; Satoh, N; Neda, M; Hozumi, M; Oka, R; Hiraga, H; Tadano, T. Monoamine oxidase and head-twitch response in mice: Mechanisms of α-methylated substrate derivatives. Neurotoxicology, 1 Jan 2004, 25 (1), 223–232. 169 kB. https://doi.org/10.1016/S0161-813X(03)00101-3 #LSD
Laing, RR. The disposition of Nicholas Sand’s conspiracy to traffic in LSD, MDA, MDMA and DMT charges. JCLIC, 1 Jul 1998, 8 (3), 15-16. 575 kB.
Hardison, C. Nick Sand, orange sunshine LSD chemist, dies at 75. JCLIC, 1 Mar 2017, 27 (2), 4-6. 288 kB.
Rosenfeld, S. William Pickard’s long, strange trip: Suspected LSD trail leads from the Bay Area’s psychedelics era to a missile silo in Kansas. JCLIC, 1 Jul 2001, 11 (3), 8-11. 525 kB.
Ferriss, S; Brazil, E. LSD-case fugitive jailed in Canada: Mounties arrest figure from S.F. psychedelic era on charges of running major drug lab. JCLIC, 1 Jan 1997, 7 (1), 4-5. 522 kB.
Nichols, DE; Walter, H. The history of psychedelics in psychiatry. Pharmacopsychiatry, 1 Jul 2021, 54 (04), 151–166. 305 kB. https://doi.org/10.1055/a-1310-3990 #LSD
Kozlowska, U; Nichols, C; Wiatr, K; Figiel, M. From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. J. Neurochem., 13 Sep 2021, 95 (6), 1575-1584. 35.4 MB. https://doi.org/10.1111/jnc.15509 #LSD
Dong, C; Ly, C; Dunlap, LE; Vargas, MV; Sun, J; Hwang, I; Azinfar, A; Oh, WC; Wetsel, WC; Olson, DE; Tian, L. Psychedelic-inspired drug discovery using an engineered biosensor. Cell, 13 May 2021, 184 (10), 2779-2792.e18. 8.3 MB. https://doi.org/10.1016/j.cell.2021.03.043 #LSD NMR
Cumming, P; Scheidegger, M; Dornbierer, D; Palner, M; Quednow, BB; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 1 Jan 2021, 26 (9), 2451. 3.5 MB. https://doi.org/10.3390/molecules26092451 #1
de Oliveira Magalhães, L; Arantes, LC; Braga, JWB. Identification of NBOMe and NBOH in blotter papers using a handheld NIR spectrometer and chemometric methods. Microchem. J., 1 Jan 2019, 144, 151–158. 2.7 MB. https://doi.org/10.1016/j.microc.2018.08.051 #LSD
Mesley, RJ; Evans, WH. Infrared identification of lysergide (LSD). J. Pharm. Pharmacol., 1 Nov 1969, 21 (11), 713–720. 484 kB. https://doi.org/10.1111/j.2042-7158.1969.tb08160.x #LSD IR
Ripani, L; Schiavone, S; Garofano, L. GC quantitative determination of illicit LSD. J. Forensic Sci., 1 Mar 1994, 39 (2), 512–517. 352 kB. https://doi.org/10.1520/JFS13623J #LSD GC
Harris, HA; Kane, T. A method for identification of lysergic acid diethylamide (LSD) using a microscope sampling device with fourier transform infrared (FTIR) spectroscopy. J. Forensic Sci., 1 Jul 1991, 36 (4), 1186–1191. 352 kB. https://doi.org/10.1520/JFS13134J #LSD IR
Brandt, SD; Kavanagh, PV; Westphal, F; Pulver, B; Schwelm, HM; Whitelock, K; Stratford, A; Auwärter, V; Halberstadt, AL. Analytical profile, in vitro metabolism and behavioral properties of the lysergamide 1P‐AL‐LAD. Drug Test. Anal., 29 May 2022, 14 (8), 1503-1518. 1.3 MB. https://doi.org/10.1002/dta.3281 #LSD GC,LC,MS,NMR
Kolaczynska, KE; Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of 4-alkoxy-3,5-dimethoxy-phenethylamines (mescaline derivatives) and related amphetamines. Front. Pharmacol., 9 Feb 2022, 12 794254. 1.0 MB. https://doi.org/10.3389/fphar.2021.794254 #3
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #LSD
Vogel, WH; Evans, BD. Structure-activity-relationships of certain hallucinogenic substances based on brain levels. Life Sci., 15 May 1977, 20 (10), 1629–1635. 419 kB. https://doi.org/10.1016/0024-3205(77)90335-6 #Lysergic acid diethylamide
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #3a
Freedman, DX. Hallucinogenic drug research – if so, so what?: Symposium summary and commentary. Pharmacol. Biochem. Behav., 1 Feb 1986, 24 (2), 407–415. 1.0 MB. https://doi.org/10.1016/0091-3057(86)90371-0 #LSD
Monte, AP; Marona-Lewicka, D; Kanthasamy, A; Sanders-Bush, E; Nichols, DE. Stereoselective LSD-like activity in a series of d-lysergic acid amides of (R)- and (S)-2-aminoalkanes. J. Med. Chem., 1 Mar 1995, 38 (6), 958–966. 1.2 MB. https://doi.org/10.1021/jm00006a015 #1 MS,NMR,IR,TLC,other
Tanaka, R; Kawamura, M; Mizutani, S; Kikura-Hanajiri, R. Identification of LSD analogs, 1cP-AL-LAD, 1cP-MIPLA, 1V-LSD and LSZ in sheet products. Forensic Toxicol., 21 Feb 2023, n/a. 993 kB. https://doi.org/10.1007/s11419-023-00661-1 #LSD LC,MS,NMR,UV
McBride, MC. Bufotenine: Toward an understanding of possible psychoactive mechanisms. J. Psychoactive Drugs, 1 Jan 2000, 32 (3), 321–331. 1.6 MB. https://doi.org/10.1080/02791072.2000.10400456
Shulgin, AT. LSD Flashbacks. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 1 Mar 2001.
Kurrasch-Orbaugh, DM. Elucidation of the serotonin 5-HT2A receptor-coupled phospholipase A2 signaling pathway. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 May 2002. 7.9 MB. #d-LSD
Azoury, M; Zelkowicz, A; Goren, Z; Almog, J. Evaluation of ninhydrin analogues and other electron-deficient compounds as spray reagents for drugs on thin layer chromatograms. Microgram J., 1 Jan 2003, 1 (1–2), 23–31. 318 kB. spot
Shulgin, AT. LSD and pregnancy. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 28 Jan 2004.