#52 DESOXY SYNTHESIS: To a well-stirred solution of 31 g 2,6-dimethoxytoluene in 200 mL CH2Cl2 there was added 11 mL elemental bromine, a portion at a time. There was a copious evolution of HBr and the color gradually faded from deep red to straw. The reaction mixture was poured into 500 mL H2O, and the organic layer separated, washed first with dillute NaOH and finally with dilute HCl. The solvent was removed under vacuum, and the residue distilled at 85–90 °C at 0.4 mm/Hg to provide 44 g of 3-bromo-2,6-dimethoxytoluene as a white oil.
A well-stirred solution of 42 mL diisopropylamine in 100 mL petroleum ether was placed in a He atmosphere and cooled to 0 °C with an external ice-water bath. There was then added 120 mL of a 2.5 M solution of n-butyllithium in hexane, producing a clear but viscous solution of the lithium amide. Maintaining this temperature, there was added 100 mL of anhydrous THF, followed by 10 mL dry CH3CN, which produced an immediate white precipitate. A solution of 23 g of 3-bromo-2,6-dimethoxytoluene in 75 mL anhydrous THF was then added which produced a light red color. The reaction mixture was allowed to come to room temperature. The color became progressively darkened, eventually becoming a deep red-brown. After 0.5 h, the reaction mixture was poured into 500 mL of dilute H2SO4, the layers were separated, and the aqueous layer extracted with 2×75 mL CH2Cl2. The organics were combined, the solvent removed under vacuum, and the residue distilled. Discarding a first fraction, the cut boiling at 125–165 °C at 0.3 mm/Hg was collected. This light yellow fraction spontaneously crystallized and weighed 11.0 g. Trituration under 20 mL petroleum ether provided 1.72 g of 3,5-dimethoxy-4-methylphenylacetonitrile as a yellowish solid.
A solution of LAH in anhydrous THF under nitrogen (20 mL of a 1.0 M solution) was cooled to 0 °C and vigorously stirred. There was added, dropwise, 0.54 mL 100% H2SO4, followed by 1.5 g 3,5-dimethoxy-4-methylphenylacetonitrile as a solid. The reaction mixture was stirred at 0 °C for a few min, then brought to room temperature for 1 h, and finally to a reflux on the steam bath for 30 min. After cooling back to 0 °C there was added IPA until no more hydrogen was evolved, followed by sufficient 15% NaOH to produce a granular texture. The white solids were removed by filtration, and washed with THF. The filtrate and washes were stripped of solvent under vacuum, the residue added to 150 mL dilute H2SO4 and washed with 2×50 mL CH2Cl2. The aqueous phase was made basic with 25% NaOH, and extracted with 3×100 mL CH2Cl2. These extracts were pooled, the solvent removed under vacuum, and the residue distilled at 110–120 °C at 0.45 mm/Hg to give a colorless viscous oil. This was dissolved in 10 mL of IPA, neutralized with 10 drops of concentrated HCl and diluted with 20 mL anhydrous Et2O. The product was removed by filtration, washed with Et2O, and air dried to give 0.55 g 3,5-dimethoxy-4-methylphenethylamine (DESOXY) as white crystals.
DOSAGE: 40–120 mg.
DURATION: 6–8 h.
QUALITATIVE COMMENTS: (with 40 mg) “Initially I felt very chilled, so I lay down under a blanket. Eyes-closed imagery became very dream-like and my general state was felt as having lost my center. Also, not much in touch with feelings, sense of strangeness, almost alien view of the world. Not through recognizable eyes. Neither pleasant nor unpleasant, just strange. Was able to drift into sleep very easily, or sleep-like trance state, with disconnected, far-out imagery. After 3 hours the nausea was gone, I was able to get up and explore. A little food went down well. No drive, no strong focus in any direction. Feel this was a quite fascinating experience. Completely down by six hours. Would go a bit slowly because of slight hints of neurological sensitivity—the instant chilling and a tendency to dart on going to sleep. The nervous system does not feel over-exposed, but all of a sudden there will be a millisecond of auditory hallucination, or an out-of-the-blue startle. So take it easy going up. [Some 24 hours after this experiment had been completed, and a normal baseline re-established, a complex and psychologically disruptive syndrome occurred, that lasted for the better part of a week. The temporal juxtaposition between the use of desoxy and the subsequent “spiritual crisis” initially suggested some possible connection, but in retrospect the events seem to be unrelated].”
(with 40 mg) “I have offered to be a control on an experiment where there had been a close relationship between a trial with desoxy and what might have been a psychotic break, or some kind of so-called spiritual emergency. These two events lay within a day of one another. I was aware of my 40 milligram dosage at about three-quarters of an hour into the experiment, and felt that there was no more intensification at the two-hour point. At that time I felt distinctly spaced but with a very good feeling, and I could see no reason not to increase the dosage at some future time. There was a good and mellow mood, and enjoyment in escapist reading. The only physical oddity that I noted was that there had been no urge to urinate, and only a small amount of quite concentrated urine was passed rather late in the experiment. I was at baseline at the fifth hour, and there was nothing unusual at any time during the following week.”
(with 100 mg) “The stuff has a sweet taste! There was a slight heart-push in the early awareness period, with a pulse up to 100 and a feeling of pressure in the chest. There were no apparent visual enhancements, but the eyes-closed imagery to music was noteworthy. Thinking skills and conversation seemed to be fully under control, if not enhanced. There was none of the colorful psychedelic world of , but this might be just around the corner; perhaps with a larger dose. This is a comfortable in-between level. Sleep was not possible at the sixth hour, but two hours later, it was easy and very restful. There was no negative price to pay the next day.”
EXTENSIONS AND COMMENTARY: All substituents that are involved with the several drugs being discussed in this writing are really things that are stuck like warts on the benzene ring that is central to every phenethylamine. Some of these warts are things attached with a oxygen atom; there are some of these in every single compound in this story. No oxygen atom, no psychedelic effect. Without them, one has stimulants or, more frequently, no effects at all.
But the removal of an oxygen atom (in those cases where there is more than one) can radically change the nature of the effects seen. This is the exact meaning of the term “desoxy.” “Des”, without, and “oxy”, the oxygen. Since this drug is simply the structure of with the oxygen at the 4-position plucked out of the picture, the first impulse was to abbreviate this compound as for des-oxymescaline. However, a long, long time ago, in a universe far, far away, a compound was synthesized that had a methoxy group replaced by a methyl, and it was already named DOM. This was the first of the analogs, and the initials stood for desoxy (DO, losing an oxygen) and methyl (M, having it replaced with a methyl group). These are two different worlds. One M stands for , and the other M stands for Methyl. Let’s call it 4-desoxymescaline, or simply DESOXY, and be exact.
This drug is a prime example of a pharmacological challenge directed to the metabolic attack at the 4-position as a mechanism for the expression of biological activity. A methoxy group there would allow easy removal of the methyl group from the oxygen by some demethylation process, but a bare methyl group there cannot be removed by any simple process. It must be removed by a very difficult oxidation.
This is not the first time that oxygen atoms have been removed from the molecule. Both the (3,5-dimethyl-4-methoxyphenethylamine) and (also called desoxymescaline in the literature, but really tri-desoxymescaline or 3,4,5-trimethylphenethylamine) have been studied in the cat, and have shown extraordinary pharmacological profiles of CNS action. The trimethyl compound showed behavior that was interpreted as being intense mental turmoil, accompanied by a startling rise in body temperature. The significance is hard to determine, in that gave similar responses in the cat, but was without effects at all. No human studies have been made on these compounds, just animal studies. But they might prove upon trial in man to be most revealing. They would have to be performed with exceptional care.
The 3-carbon chain amphetamines that correspond to these look-alikes with one or more methoxy groups replaced with methyl groups, are largely untested and would require independent and novel syntheses. The is known, and is known to be very hard on experimental cats.
A analogue with a bromo atom in place of the 4-methoxyl group is an analogue of in exactly the same way that (a very potent amphetamine) is an analog of (the original trisubstituted amphetamine). This analogue, 3,5-dimethoxy-4-bromoamphetamine , has been found to be a most effective agonist, and it is a possibility that it could be a most potent phenethylamine. But, as of the present time, it has never been assayed in man.
13 May 2016 · ·

About PiHKAL · info

This version of Book II of PiHKAL is based on the Erowid online version, originally transcribed by Simson Garfinkle and converted into HTML by Lamont Granquist. I drew also on “Tyrone Slothrop’s” (Unfinished) Review of PIHKAL to enumerate the many analogues mentioned in PiHKAL but not described at length. Many, many others have since been added.
I have tried here to expunge any artifacts introduced by the earlier transcriptions and restore the typographic niceties found in the printed edition. I’ve also made minor changes to some chemical names in line with current nomenclature practice. Typically the change is little more than expanding a prefix or setting it in italics. The history page has further details.

Cautionary note

“At the present time, restrictive laws are in force in the United States and it is very difficult for researchers to abide by the regulations which govern efforts to obtain legal approval to do work with these compounds in human beings.
“No one who is lacking legal authorization should attempt the synthesis of any of the compounds described in these files, with the intent to give them to man. To do so is to risk legal action which might lead to the tragic ruination of a life. It should also be noted that any person anywhere who experiments on himself, or on another human being, with any of the drugs described herein, without being familiar with that drug’s action and aware of the physical and/or mental disturbance or harm it might cause, is acting irresponsibly and immorally, whether or not he is doing so within the bounds of the law.”
Alexander T. Shulgin

Copyright notice

The copyright for Book I of PiHKAL has been reserved in all forms and it may not be distributed. Book II of PiHKAL may be distributed for non-commercial reproduction provided that the introductory information, copyright notice, cautionary notice and ordering information remain attached.

Ordering information

PiHKAL is the extraordinary record of the authors’ years exploring the chemistry and transformational power of phenethylamines. This book belongs in the library of anyone seeking a rational, enlightened and candid perspective on psychedelic drugs.
Though Sasha and Ann have put Book II of PiHKAL in the public domain, available to anyone, I strongly encourage you to buy a copy. We owe them — and there’s still nothing quite like holding a real book in your hands.
PiHKAL (ISBN 0-9630096-0-5) is available for US$24.50 (plus $10 domestic first-class shipping) from Transform Press.
Transform Press,
Box 13675
Berkeley, CA 94701

510 · 934 · 4930 (voice)
510 · 934 · 5999 (fax)