Exploring M. To explore a different substance…

Names:
Mescaline · M · EA-1306 · Mescaline · 3,4,5-Trimethoxyphenethylamine
IUPAC name:
2-(3,4,5-Trimethoxyphenyl)ethan-1-amine
ID: 96 · Formula: C11H17NO3 · Molecular weight: 211.258
InChI: InChI=1S/C11H17NO3/c1-13-9-6-8(4-5-12)7-10(14-2)11(9)15-3/h6-7H,4-5,12H2,1-3H3

Smythies, JR. The mescaline phenomena. Br. J. Philos. Sci., 1 Feb 1953, 3 (12), 339–347. 72 kB. http://dx.doi.org/10.1093/bjps/III.12.339

Shulgin, AT. Profiles of psychedelic drugs. 7. Mescaline. J. Psychedelic Drugs, 1 Jan 1979, 11 (4), 355. 1336 kB. http://dx.doi.org/10.1080/02791072.1979.10471421

Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 2002, 1634–1638. 115 kB. http://dx.doi.org/10.1039/b200607c

Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. http://dx.doi.org/10.1038/221537a0

Walters, GC; Cooper, PD. Alicyclic analogue of mescaline. Nature, 20 Apr 1968, 218 (5138), 298–300. 3141 kB. http://dx.doi.org/10.1038/218298a0

Jacob, P; Shulgin, AT. Sulfur analogues of psychotomimetic agents. 3. Ethyl homologues of mescaline and their monothioanalogues. J. Med. Chem., 1 Jan 1984, 27 (7), 881–887. 1213 kB. http://dx.doi.org/10.1021/jm00373a013

Clark, LC; Benington, F; Morin, RD. The effects of ring-methoxyl groups on biological deamination of phenethylamines. J. Med. Chem., 1 May 1965, 8 (3), 353–355. 389 kB. http://dx.doi.org/10.1021/jm00327a016

Friedhoff, AJ; Goldstein, M. New developments in metabolism of mescaline and related amines. Ann. N. Y. Acad. Sci., 1 Jan 1962, 96, 5–13. 506 kB. http://dx.doi.org/10.1111/j.1749-6632.1962.tb50097.x

Daly, J; Axelrod, J; Witkop, B. Methylation and demethylation in relation to the in vitro metabolism of mescaline. Ann. N. Y. Acad. Sci., 1 Jan 1962, 96, 37–43. 397 kB. http://dx.doi.org/10.1111/j.1749-6632.1962.tb50099.x

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1767 kB. http://dx.doi.org/10.1111/j.2042-7158.1985.tb03072.x

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. http://dx.doi.org/10.1124/jpet.106.117507

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. http://dx.doi.org/10.1371/journal.pone.0009019

McGrane, O; Simmons, J; Jacobsen, E; Skinner, C. Alarming trends in a novel class of designer drugs. J. Clinic. Toxicol., 1 Nov 2011, 1 (2). 775 kB. http://dx.doi.org/10.4172/2161-0495.1000108

Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8647 kB.

Fenderson5555. Two syntheses of mescaline. 21 Mar 2011. 2247 kB.

Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5904 kB.

Meyers-Riggs, B. Leminger’s scalines. countyourculture, countyourculture: rational exploration of the underground, 4 May 2012.

Ho, B; Tansey, LW; Balster, RL; An, R; McIsaac, WM; Harris, RT. Amphetamine analogs. II. Methylated phenethylamines. J. Med. Chem., 1 Jan 1970, 13 (1), 134–135. 278 kB. http://dx.doi.org/10.1021/jm00295a034

Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy andor methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. http://dx.doi.org/10.1021/jm00295a007

Kier, LB; Glennon, RA. Psychotomimetic phenalkylamines as serotonin agonists: An SAR analysis. Life Sci., 8 May 1978, 22 (18), 1589–1593. 238 kB. http://dx.doi.org/10.1016/0024-3205(78)90053-X

Nichols, DE; Shulgin, AT; Dyer, DC. Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci., 1 Jan 1977, 21 (4), 569–576. 320 kB. http://dx.doi.org/10.1016/0024-3205(77)90099-6

Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. http://dx.doi.org/10.1016/0014-2999(82)90454-X

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; Vol. 11, pp 243–333. 2584 kB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. http://dx.doi.org/10.1002/omr.1270210611

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. http://dx.doi.org/10.1002/cmdc.200800133

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 13 Dec 2011. 1038 kB. http://dx.doi.org/10.1002/dta.413

Desantis, F; Nieforth, KA. Synthesis of potential mescaline antagonists. J. Pharm. Sci., 1 Jan 1976, 65 (10), 1479–1484. 704 kB. http://dx.doi.org/10.1002/jps.2600651016

White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. http://dx.doi.org/10.1016/0027-5107(77)90210-X

Short, JH; Dunnigan, DA; Ours, CW. Synthesis of phenethylamines from phenylacetonitriles obtained by alkylation of cyanide ion with Mannich bases from phenols and other benzylamines. Tetrahedron, 1973, 29 (14), 1931–1939. 791 kB. http://dx.doi.org/10.1016/0040-4020(73)80127-9

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. http://dx.doi.org/10.1021/jm00177a017

Glennon, RA; Kier, LB; Shulgin, AT. Molecular connectivity analysis of hallucinogenic mescaline analogs. J. Pharm. Sci., 1 Jan 1979, 68 (7), 906–907. 252 kB. http://dx.doi.org/10.1002/jps.2600680733

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. http://dx.doi.org/10.1016/j.pbb.2007.06.001

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3) 364–381. 817 kB. http://dx.doi.org/10.1016/j.neuropharm.2011.01.017

Ogunbodede, O; McCombs, D; Trout, K; Daley, PF; Terry, M. New mescaline concentrations from 14 taxacultivars of Echinopsis spp. (Cactaceae) (“San Pedro”) and their relevance to shamanic practice. J. Ethnopharmacol., 15 Sep 2010, 131 (2), 356–362. 324 kB. http://dx.doi.org/10.1016/j.jep.2010.07.021

Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. http://dx.doi.org/10.1016/j.bmc.2008.02.033

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. http://dx.doi.org/10.1016/j.bmc.2003.10.027

Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. http://dx.doi.org/10.1016/S0968-0896(03)00437-1

Battersby, A; Binks, R; Huxtable, R. Biosynthesis of cactus alkaloids. Tetrahedron Lett., 1 Jan 1967, 8 (6), 563–565. 134 kB. http://dx.doi.org/10.1016/S0040-4039(00)90548-3

N-Acetylmescaline
METHYL-MESCALINE
Trichocerine
N-Formylmescaline
Mescaloxylic acid
Mescaloruvic acid
Mescaline-NBOMe
N-AL-M
N-CCCI-M
N-cPr-M
N-Pr-M
N-CPM-M
AEM
TMA
APM
ABM
AAM
AHM
ASM
ANM
α-D
α-HMe-M
α-CMe-M
α-MM-M
α-MV-M
AOM
α-TFMM
α-Carboxy-mescaline
BOM
β-D
β-HOM
TeMPEA
2-CM
2-BM
ME
3-TME
3-DESMETHYL · 3-Demethylmescaline
3-Cl-4,5-DMPEA
3,4,5-BMM
AL
B
CPM
4-D
DESOXY
E
IP
MAL
P
PE
PROPYNYL
TB
4-TE
4-TM
TP
BZ
A
H
S
FE
DFE
TFE
FP
IB
341
3,4,5-MBM · 4-Br-3,5-DMPEA
DESMETHYL
3,5-DMPEA
3C-DFM
DFIP
TFP
TFM
DFM
DMPEA
MP
3-TM
3,4,5-2C-T-7
LOPHOPHINE
MCPA · TMT
265
Elemicin
cis-Isoelemicin
Isoelemicin
Mescaline succinimide
Mescaline malimide
Mescaline citrimide
Mescaline maleimide
Mescaline isocitrimide lactone
Peyonine
Peyoglunal
Jimscaline
homo-Mescaline
α,N-Butenyl-M
N,N-Butenyl-M
M-βk
TMAT
504
1310
1311
1312
1528
1529
1530
1531
3,4,5-Trimethoxybenzylamine
BOHD
IM
TMPEA
TMPEA-5 · 2C-TMA-5
TMPEA-6 · 2C-TMA-6
N-Me-3-DESMETHYL
2C-pEtOH
DOOH
β-HO-2,5-DMA
β,3,4-HO-N-iPr-DHPEA
MHMAOH
N,N-Me-HME
N-Me-DME
β,3,4-TMPEA
DMAOH
β-HO-DMA
β-HO-4,3-EMPEA
β,2-HO-N-Me-5-MA
β-HO-N-Me-2,5-DMPEA
BODM
β-HO,Me-2,5-DMPEA
β,2-HO-N-Me-5-EPEA
β,2-HO-5-EA
β-HO-N-Me-3,5-DMPEA
β-HO-N-Me-2,6-DMPEA
TMPEA-4
N-HO-2C-D
α-Me-3-DESMETHYL
DESMETHYL-M
α-Me-DESMETHYL
N-Methyl-3,4,5-trimethoxybenzylamine
N-Acetylmescaline
METHYL-MESCALINE
Trichocerine
N-Formylmescaline
Mescaloxylic acid
Mescaloruvic acid
Mescaline-NBOMe
N-AL-M
N-CCCI-M
N-cPr-M
N-Pr-M
N-CPM-M
AEM
TMA
APM
ABM
AAM
AHM
ASM
ANM
α-D
α-HMe-M
α-CMe-M
α-MM-M
α-MV-M
AOM
α-TFMM
α-Carboxy-mescaline
BOM
β-D
β-HOM
TeMPEA
2-CM
2-BM
ME
3-TME
3-DESMETHYL · 3-Demethylmescaline
3-Cl-4,5-DMPEA
3,4,5-BMM
AL
B
CPM
4-D
DESOXY
E
IP
MAL
P
PE
PROPYNYL
TB
4-TE
4-TM
TP
BZ
A
H
S
FE
DFE
TFE
FP
IB
341
3,4,5-MBM · 4-Br-3,5-DMPEA
DESMETHYL
3,5-DMPEA
3C-DFM
DFIP
TFP
TFM
DFM
DMPEA
MP
3-TM
3,4,5-2C-T-7
LOPHOPHINE
MCPA · TMT
265
Elemicin
cis-Isoelemicin
Isoelemicin
Mescaline succinimide
Mescaline malimide
Mescaline citrimide
Mescaline maleimide
Mescaline isocitrimide lactone
Peyonine
Peyoglunal
Jimscaline
homo-Mescaline
α,N-Butenyl-M
N,N-Butenyl-M
M-βk
TMAT
504
1310
1311
1312
1528
1529
1530
1531
3,4,5-Trimethoxybenzylamine
BOHD
IM
TMPEA
TMPEA-5 · 2C-TMA-5
TMPEA-6 · 2C-TMA-6
N-Me-3-DESMETHYL
2C-pEtOH
DOOH
β-HO-2,5-DMA
β,3,4-HO-N-iPr-DHPEA
MHMAOH
N,N-Me-HME
N-Me-DME
β,3,4-TMPEA
DMAOH
β-HO-DMA
β-HO-4,3-EMPEA
β,2-HO-N-Me-5-MA
β-HO-N-Me-2,5-DMPEA
BODM
β-HO,Me-2,5-DMPEA
β,2-HO-N-Me-5-EPEA
β,2-HO-5-EA
β-HO-N-Me-3,5-DMPEA
β-HO-N-Me-2,6-DMPEA
TMPEA-4
N-HO-2C-D
α-Me-3-DESMETHYL
DESMETHYL-M
α-Me-DESMETHYL
N-Methyl-3,4,5-trimethoxybenzylamine
3 December 2016 · Creative Commons BY-NC-SA ·