Exploring DMT. To explore a different substance…

Names:
DMT
Nigerine
Desoxybufotenine
Indole, 3-[2-(dimethylamino)ethyl]
Tryptamine, N,N-dimethyl
3-[2-(Dimethylamino)ethyl]indole
N,N-Dimethyltryptamine
IUPAC name:
2-(1H-Indol-3-yl)-N,N-dimethylethan-1-amine
ID: 5006 · Formula: C12H16N2 · Molecular weight: 188.269
InChI: InChI=1S/C12H16N2/c1-14(2)8-7-10-9-13-12-6-4-3-5-11(10)12/h3-6,9,13H,7-8H2,1-2H3

Moura, S; Carvalho, FG; de Oliveira, CDR; Pinto, E; Yonamine, M. qNMR: An applicable method for the determination of dimethyltryptamine in ayahuasca, a psychoactive plant preparation. Phytochem. Lett., 11 Jun 2010, 3 (2), 79–83. 227 kB. https://doi.org/10.1016/j.phytol.2009.12.004

Gaujac, A; Martinez, ST; Gomes, AA; de Andrade, SJ; da Cunha Pinto, A; David, JM; Navickiene, S; de Andrade, JB. Application of analytical methods for the structural characterization and purity assessment of N,N-dimethyltryptamine, a potent psychedelic agent isolated from Mimosa tenuiflora inner barks. Microchem. J., Jul 2013, 109, 78-83. 685 kB. https://doi.org/10.1016/j.microc.2012.03.033

Brandt, SD; Martins, CP; Freeman, S; Dempster, N; Riby, PG; Gartz, J; Alder, JF. Halogenated solvent interactions with N,N-dimethyltryptamine: Formation of quaternary ammonium salts and their artificially induced rearrangements during analysis. Forensic Sci. Int., 4 Jul 2008, 178 (2–3), 162–170. 785 kB. https://doi.org/10.1016/j.forsciint.2008.03.013

Brandt, SD; Moore, SA; Freeman, S; Kanu, AB. Characterization of the synthesis of N,N-dimethyltryptamine by reductive amination using gas chromatography ion trap mass spectrometry. Drug Test. Analysis, 1 Jul 2010, 2 (7), 330–338. 192 kB. https://doi.org/10.1002/dta.142

Fenderson5555. DMT from tryptophan? , 23 Mar 2011. . Fenderson5555 3.9 MB. Big hug to W. Snow for kindly filling this gap in the collection.

Fenderson5555. Mechanisms in DMT synthesis. , 3 Jan 2011. . Fenderson5555 2.6 MB.

McIlhenny, EH; Pipkin, KE; Standish, LJ; Wechkin, HA; Strassman, R; Barker, SA. Direct analysis of psychoactive tryptamine and harmala alkaloids in the Amazonian botanical medicine ayahuasca by liquid chromatography–electrospray ionization-tandem mass spectrometry. J. Chromatogr. A, 18 Dec 2009, 1216 (51), 8960–8968. 450 kB. https://doi.org/10.1016/j.chroma.2009.10.088

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Pires, APS; de Oliveira, CDR; Moura, S; Dõrr, FA; Silva, WAE; Yonamine, M. Gas chromatographic analysis of dimethyltryptamine and β-carboline alkaloids in ayahuasca, an Amazonian psychoactive plant beverage. Phytochem. Anal., 1 Mar 2009, 20 (2), 149–153. 131 kB. https://doi.org/10.1002/pca.1110

Jensen, N. Tryptamines as ligands and modulators of the serotonin 5-HT2A receptor and the isolation of aeruginascin from the hallucinogenic mushroom Inocybe aeruginascens. Ph. D. Thesis, Georg-August-Universität zu Göttingen, Göttingen, Germany, 4 Nov 2004. 2.3 MB. Referent: Prof. Dr. H. Laatsch; Korreferent: Prof. D. E. Nichols.

Gornez-Jeria, JS; Morales-Lagos, D; Cassels, BK; Saavedra-Aguilar, JC. Electronic structure and serotonin receptor binding affinity of 7-substituted tryptamines QSAR of 7-substituted tryptamines. Quant. Struct.-Act. Relat., 1986, 5 (4), 153–157. 577 kB. https://doi.org/10.1002/qsar.19860050404

Kalir, A; Szara, S. Synthesis and pharmacological activity of alkylated tryptamines. J. Med. Chem., 1 May 1966, 9 (3), 341–344. 482 kB. https://doi.org/10.1021/jm00321a017

Szara, S; Axelrod, J. Hydroxylation and N-demethylation of N,N-dimethyltryptamine. Experientia, 1 Jun 1959, 15 (6), 216–217. 304 kB. https://doi.org/10.1007/BF02158111

McKenna, DJ; Repke, DB; Lo, L; Peroutka, SJ. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 1 Mar 1990, 29 (3), 191–198. 679 kB. https://doi.org/10.1016/0028-3908(90)90001-8

Strassman, RJ. Human psychopharmacology of N,N,-dimethyltryptamine. Behav. Brain Res., 15 Dec 1995, 73 (1–2), 121–124. 396 kB. https://doi.org/10.1016/0166-4328(96)00081-2

Szára, S. The comparison of the psychotic effect of tryptamine derivatives with the effects of mescaline and LSD-25 in self-experiments. In Psychotropic Drugs [proceedings]; Garattini, S; Ghetti, V, Eds., Elsevier, 1957; pp 460–467. 480 kB.

Gambelunghe, C; Aroni, K; Rossi, R; Moretti, L; Bacci, M. Identification of N,N-dimethyltryptamine and β-carbolines in psychotropic ayahuasca beverage. Biomed. Chromatogr., 1 Oct 2008, 22 (10), 1056–1059. 140 kB. https://doi.org/10.1002/bmc.1023

Swanson, LR. Unifying theories of psychedelic drug effects. Frontiers in Pharmacology, 2 Mar 2018, 9 n/a. 1.7 MB. https://doi.org/10.3389/fphar.2018.00172

Brandt, SD; Martins, CP. Analytical methods for psychoactive N,N-dialkylated tryptamines. Trends Anal. Chem., 1 Sep 2010, 29 (8), 858–869. 446 kB. https://doi.org/10.1016/j.trac.2010.04.008 #1

Fricke, J; Blei, F; Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed., 20 Aug 2017, 56 (40), 12352-12355. 1.8 MB. https://doi.org/10.1002/anie.201705489

Taylor, EW; Nikam, S; Weck, B; Martin, A; Nelson, D. Relative selectivity of some conformationally constrained tryptamine analogs at 5-HT1, 5-HT1A and 5-HT2 recognition sites. Life Sci., 19 Oct 1987, 41 (16), 1961–1969. 622 kB. https://doi.org/10.1016/0024-3205(87)90749-1

Meyer, MR; Caspar, A; Brandt, SD; Maurer, HH. A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches. Anal. Bioanal. Chem., 1 Jan 2014, 406 (1), 225–237. 457 kB. https://doi.org/10.1007/s00216-013-7425-9

Dinger, J; Woods, C; Brandt, SD; Meyer, MR; Maurer, HH. Cytochrome P450 inhibition potential of new psychoactive substances of the tryptamine class. Toxicol. Lett., 2016, 241, 82-94. 2.6 MB. https://doi.org/10.1016/j.toxlet.2015.11.013

Blough, BE; Landavazo, A; Decker, AM; Partilla, JS; Baumann, MH; Rothman, RB. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 1 Oct 2014, 231 (21), 4135-4144. 298 kB. https://doi.org/10.1007/s00213-014-3557-7

Jacob, MS; Presti, DE. Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med. Hypotheses, 2005, 64 (5), 930–937. 162 kB. https://doi.org/10.1016/j.mehy.2004.11.005

Gaujac, A; Ford, JL; Dempster, NM; de Andrade, JB; Brandt, SD. Investigations into the polymorphic properties of N,N-dimethyltryptamine by X-ray diffraction and differential scanning calorimetry. Microchem. J., 1 Sep 2013, 110, 146–157. 1.2 MB. https://doi.org/10.1016/j.microc.2013.03.009

Blackledge, RD; Taylor, CM. Psychotria viridis—A botanical source of dimethyltryptamine (DMT). Microgram J., 1 Jan 2003, 1 (1–2), 18–22. 429 kB.

Fasanello, JA; Placke, AD. The isolation, identification, and quantitation of dimethyltryptamine (DMT) in Mimosa Hostilis. Microgram J., 1 Jan 2007, 5 (1–4), 41–52. 168 kB.

Rodriguez-Cruz, SE. Analysis and characterization of designer tryptamines using electrospray ionization mass spectrometry (ESI-MS). Microgram J., 1 Jul 2005, 3 (3–4), 107–129. 1.6 MB.

Barker, SA; Borjigin, J; Lomnicka, I; Strassman, R. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomed. Chromatogr., 1 Dec 2013, 27 (12), 1690-1700. 929 kB. https://doi.org/10.1002/bmc.2981

McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed. Chromatogr., 1 Mar 2012, 26 (3), 301–313. 557 kB. https://doi.org/10.1002/bmc.1657

McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed. Chromatogr., 1 Sep 2011, 25 (9), 970–984. 1.0 MB. https://doi.org/10.1002/bmc.1551

Su, T; Hayashi, T; Vaupel, DB. When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor. Sci. Signal., 10 Mar 2009, 2 (61), 1–4. 392 kB. https://doi.org/10.1126/scisignal.261pe12

Szara, S. Dimethyltryptamin: Its metabolism in man; the relation to its psychotic effect to the serotonin metabolism. Experientia, 1 Jan 1956, 12 (11), 441–442. 333 kB. https://doi.org/10.1007/BF02157378

Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. https://doi.org/10.1016/S0376-8716(99)00148-9

Brandt, SD; Tirunarayanapuram, SS; Freeman, S; Dempster, N; Barker, SA; Daley, PF; Cozzi, NV; Martins, CPB. Microwave-accelerated synthesis of psychoactive deuterated N,N-dialkylated-[α,α,β,β-d4]-tryptamines. J. Labelled Compd. Radiopharm., 1 Nov 2008, 51 (14), 423–429. 169 kB. https://doi.org/10.1002/jlcr.1557

Wurst, M; Kysilka, R; Flieger, M. Psychoactive tryptamines from Basidiomycetes. Folia Microbiol., 1 Feb 2002, 47 (1), 3–27. 3.1 MB. https://doi.org/10.1007/BF02818560

Glennon, RA; Young, R; Jacyno, JM. Indolealkylamine and phenalkylamine hallucinogens: Effect of α-methyl and N-methyl substituents on behavioral activity. Biochem. Pharmacol., 1 Apr 1983, 32 (7), 1267–1273. 591 kB. https://doi.org/10.1016/0006-2952(83)90281-2

Lyon, RA; Titeler, M; Seggel, MR; Glennon, RA. Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens. Eur. J. Pharmacol., 19 Jan 1988, 145 (3), 291–297. 533 kB. https://doi.org/10.1016/0014-2999(88)90432-3

Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. https://doi.org/10.1016/j.talanta.2007.06.012

Meyers-Riggs, B. N-Alkylated tryptamines. countyourculture, countyourculture: rational exploration of the underground, 10 Mar 2012.

Meyers-Riggs, B. Grid biosynthesis of psilocybin. countyourculture, countyourculture: rational exploration of the underground, 5 Dec 2011.

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017

Brandt, SD; Tearavarich, R; Dempster, N; Cozzi, NV; Daley, PF. Synthesis and characterization of 5-methoxy-2-methyl-N,N-dialkylated tryptamines. Drug Test. Analysis, 1 Jan 2012, 4 (1), 24–32. 506 kB. https://doi.org/10.1002/dta.398

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. https://doi.org/10.1016/j.bmc.2008.02.033

Cozzi, NV; Shulgin, AT; Daley, PF; Gopalakrishnan, A; Anderson, LL; Feih, JT; Ruoho, AE. Psychoactive N,N-dialkyltryptamines modulate serotonin transport by at least two mechanisms. Soc. Neurosci. Abs., 1 Jan 2008, 536.17. 52 kB.

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB.

Cozzi, NV; Gopalakrishnan, A; Anderson, LL; Feih, JT; Shulgin, AT; Daley, PF; Ruoho, AE. Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J. Neural Transm., 1 Dec 2009, 116 (12), 1591–1599. 420 kB. https://doi.org/10.1007/s00702-009-0308-8

Shulgin, AT. DMT and tryptophan. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 19 Sep 2002.

Szara, S; Hearst, E; Putney, F. Metabolism and behavioural action of psychotropic tryptamine homologues. Int. J. Neuropharmacol., 1 Nov 1962, 1 (1–3), 111–117. 1.1 MB. https://doi.org/10.1016/0028-3908(62)90015-1

Brandt, SD; Freeman, S; Fleet, IA; Alder, JF. Analytical chemistry of synthetic routes to psychoactive tryptamines. Part III. Characterisation of the Speeter and Anthony route to N,N-dialkylated tryptamines using CI-IT-MS-MS. Analyst, 1 Jan 2005, 130 (9), 1258–1262. 250 kB. https://doi.org/10.1039/b504001a

Brandt, SD; Freeman, S; Fleet, IA; McGagh, P; Alder, JF. Analytical chemistry of synthetic routes to psychoactive tryptamines. Part II. Characterisation of the Speeter and Anthony synthetic route to N,N-dialkylated tryptamines using GC-EI-ITMS, ESI-TQ-MS-MS and NMR. Analyst, 2005, 130 (3), 330–344. 403 kB. https://doi.org/10.1039/b413014f

Shulgin, AT. Profiles of psychedelic drugs. 1. DMT; 2. TMA-2. J. Psychedelic Drugs, 1 Jan 1976, 8 (2), 167–169. 2.1 MB. https://doi.org/10.1080/02791072.1976.10471846

Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255

McKenna, DJ. Monoamine oxidsase inhibitors in Amazonian hallucinogenic plants: Ethnobotanical, phytochemical, and pharmacological investigations. Ph. D. Thesis, University of British Columbia, BC, Canada, 26 Apr 1984. 12.2 MB.

Martins, CP; Freeman, S; Alder, JF; Brandt, SD. Characterisation of a proposed internet synthesis of N,N-dimethyltryptamine using liquid chromatography/electrospray ionisation tandem mass spectrometry. J. Chromatogr. A, 14 Aug 2009, 1216 (33), 6119–6123. 315 kB. https://doi.org/10.1016/j.chroma.2009.06.060

Barker, SA; McIlhenny, EH; Strassman, R. A critical review of reports of endogenous psychedelic N,N-dimethyltryptamines in humans: 1955–2010. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 617-635. 270 kB. https://doi.org/10.1002/dta.422

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001

Glennon, RA; Gessner, PK. Serotonin receptor binding affinities of tryptamine analogues. J. Med. Chem., 1 Jan 1979, 22 (4), pp 428–432. 731 kB. https://doi.org/10.1021/jm00190a014

Kline, TB; Benington, F; Morin, RD; Beaton, JM; Glennon, RA; Domelsmith, LN; Houk, KN; Rozeboom, MD. Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives. J. Med. Chem., 1 Jan 1982, 25 (11), 1381–1383. 378 kB. https://doi.org/10.1021/jm00353a021

Bõszõrményi, Z; Szára, S. Dimethyltryptamine experiments with psychotics. Br. J. Psychiatry, 1 Apr 1958, 104 (435), 445–453. 1.3 MB. https://doi.org/10.1192/bjp.104.435.445

Ciprian-Ollivier, J; Cetkovich-Bakmas, MG. Altered consciousness states and endogenous psychoses: a common molecular pathway? Schizophr. Res., 19 Dec 1997, 28 (2–3), 257–265. 722 kB. https://doi.org/10.1016/S0920-9964(97)00116-3

Fontanilla, D; Johannessen, M; Hajipour, AR; Cozzi, NV; Jackson, MB; Ruoho, AE. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science, 13 Feb 2009, 323 (5916), 934–937. 529 kB. https://doi.org/10.1126/science.1166127

DBT
DET
DIPT
DPT
EIPT
MBT
MIPT
NET
NMT
T
NIPT
N-HO-NMT
NCPT
PIPT
BIPT
MET
MPT
NPT
NBT
NIBT
NSBT
NTBT
NAT
NHT
DALT
5558
T-NEPOMe
N-Benzyltryptamine
5565
T-NBOMe
DIBT
EPT
MIBT
MSBT
DSBT
N-Formyltryptamine
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5645
MALT
5647
5648
5649
5650
tert-Butyl N-[2-(1H-indol-3-yl)ethyl]-N-methylglycinate
N2-[2-(1H-Indol-3-yl)ethyl]-N2-methylglycinamide
5653
5654
DAT
DHT
HOT-T
DMT N-oxide
α,N,N-TMT
1-Me-DMT
1-MeO-DMT · Lespedamine
2-Me-DMT
4-HO-DMT · Psilocin
4-H2PO4-DMT · Psilocybin
4-MeO-DMT
4-MeS-DMT
4-AcO-DMT
4-Amino-DMT
4F-DMT
5483
5484
5-HO-DMT
5-MeO-DMT
5-MeS-DMT
5-Br-DMT
Bufoviridine
5-EtO-DMT
5-AcO-DMT
5-Me-DMT
Sumatriptan
5-F-DMT
5-Et-DMT
5-Chloro-DMT
5-TMS-DMT
5-Ac-DMT
5-Cam-DMT
6-HO-DMT
6-MeO-DMT
6-F-DMT
6-MeS-DMT
5487
5493
6-Chloro-DMT
7-MeO-DMT
7-HO-DMT
N,N,7-TMT
7-Br-DMT
7-Et-DMT
pyr-T
pip-T
mor-T
5069
C-DMT
5073
5074
Gramine
U-6056 · DMHT
dmpyrrol-T
mepipaz-T
N-Methylhomotryptamine
Homotryptamine
2,α-DMT
α,N-DMT
α-ET
NET
1,α-DMT
α,α-DMT
4,α-DMT
7-Me-AMT
N-Methylhomotryptamine
5-Ethyltryptamine
21 April 2018 · Creative Commons BY-NC-SA ·