• References

    1. S.J. Chapman, A.A. Avanes. PeakAL: Protons I Have Known and Loved. Supplementary data. blotter: Absorbing bits of material. Isomer Design. 2015. https://doi.org/10.16889/isomerdesign-1-supp
    2. International Union of Pure and Applied Chemistry (IUPAC), H.A. Favre, W.H. Powell. Nomenclature of organic chemistry: IUPAC recommend­ations and preferred names 2013. Royal Society Of Chemistry, Cambridge, UK, 2014.
    3. A.T. Shulgin, A. Shulgin. PiHKAL: A chemical love story. Transform Press, Berkeley, CA, 1991.
    4. S.D. Brandt, T. Passie. Research on psychedelic substances. Drug Test. Analysis 2012, 4, 539–542. https://doi.org/10.1002/dta.1389
    5. D. Trachsel, C. Enzensperger, D. Lehmann. Phenethylamine: von der Struktur zur Funktion. Nachtschatten Science, Solothurn, Switzerland, 2013.
    6. Multidisciplinary Association for Psychedelic Studies (MAPS). Conference videos. Psychedelic Science 2013, Oakland, CA. Available at: http://www.maps.org/conference (accessed 1 Aug 2015)
    7. L.A. King. New phenethylamines in Europe. Drug Test. Analysis 2014, 6, 808–818. https://doi.org/10.1002/dta.1570
    8. D.E. Nichols, W.E. Fantegrossi. Emerging designer drugs, in The effects of drug abuse on the human nervous system, Elsevier, 2014, pp. 575–596. https://doi.org/10.1016/B978-0-12-418679-8.00019-8
    9. R.A. Glennon, M. Dukat, M. El-Bermawy, H. Law, J. De Los Angeles, M. Teitler, A. King, K. Herrick-Davis. Influence of amine substituents on 5-HT2A versus 5-HT2C binding of phenylalkyl- and indolylalkylamines. J. Med. Chem. 1994, 37, 1929–1935. https://doi.org/10.1021/jm00039a004
    10. H.H. Pertz, A. Rheineck, S. Elz. N-Benzylated derivatives of the hallucinogenic drugs mescaline and escaline as partial agonists at rat vascular 5-HT2Areceptors. N-S. Arch. Pharmacol. 1999, 359, R29.
    11. R. Heim, H.H. Pertz, S. Elz. Preparation and in-vitro pharmacology of novel secondary amine-type 5-HT2A-receptor agonists: From submillimolar to subnanomolar activity. Arch. Pharm. Pharm. Med. Chem. 1999, 331, 34.
    12. R. Heim, S. Elz. Novel extremely potent partial 5-HT2A-receptor agonists: Successful application of a new structure-activity concept. Arch. Pharm. Pharm. Med. Chem. 2000, 333, 18.
    13. H.H. Pertz, R. Heim, S. Elz. N-Benzylated phenylethanamines are highly potent partial agonists at 5-HT2A receptors. Arch. Pharm. Pharm. Med. Chem. 2000, 333, 30.
    14. R. Heim, H.H. Pertz, S. Elz. Partial 5-HT2A-receptor agonists of the phenylethanamine series: Effect of a trifluoromethyl substituent. Arch. Pharm. Pharm. Med. Chem. 2000, 333, 45.
    15. R. Heim. Synthesis and pharmacology of potent 5-HT2A receptor agonists which have a partial N-2-methoxybenzyl structure, Doctoral thesis, Free University of Berlin: Berlin, Germany, 2003. Available at: http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000001221?lang=en (accessed 16 Aug 2014)
    16. M. Hansen. Design and synthesis of selective serotonin receptor agonists for positron emission tomography imaging of the brain, PhD thesis, University of Copenhagen, Copenhagen, Denmark, 2010.
    17. UK Parliament. The Misuse of Drugs Act 1971 (Temporary Class Drug) Order 2013, S.I. 2013/1294, 10 Jun 2013. Available at: http://www.legislation.gov.uk/uksi/2013/1294/contents/made (acces­sed 16 Aug 2014)
    18. UK Parliament. The Misuse of Drugs Act 1971 (Ketamine etc.) (Amendment) Order 2014, S.I. 2014/1106, 10 Jun 2014. Available at: http://www.legislation.gov.uk/uksi/2014/1106/contents/made (acces­sed 16 Aug 2014)
    19. Drug Enforcement Administration. Temporary placement of three synthetic phenethylamines into schedule I, 78 FR 68716, 15 Nov 2013. Available at: https://federalregister.gov/a/2013-27315 (acces­sed 16 Aug 2014)
    20. S.W. Smith, F.M. Garlich. Availability and supply of novel psychoactive substances, in Novel psychoactive substances (Eds: P.I. Wood, D.M. Dargan), Academic Press, Boston, 2013, pp. 55–77. https://doi.org/10.1016/B978-0-12-415816-0.00003-1
    21. M. Power. Drugs 2.0: The web revolution that’s changing how the world gets high. Portobello Books, London, 2014.
    22. EMCDDA. The Internet and drug markets: Summary of results from an EMCDDA trendspotter study. European Monitoring Centre for Drugs and Drug Addiction. 2015. Available at: http://www.emcdda.europa.eu/publications/technical-reports/internet-drug-markets (accessed 13 Mar 2015)
    23. EMCDDA. New psychoactive substances in Europe: An update from the EU early warning wystem. European Monitoring Centre for Drugs and Drug Addiction. 2015. Available at: http://www.emcdda.europa.eu/publications/2015/new-psychoactive-substances (accessed 1 Aug 2015)
    24. S.D. Brandt, L.A. King, M. Evans-Brown. The new drug phenomenon. Drug Test. Analysis 2014, 6, 587–597. https://doi.org/10.1002/dta.1686
    25. Y.B. Monakhova, T. Kuballa, S. Löbell-Behrends, S. Maixner, M. Kohl-Himmelseher, W. Ruge, D.W. Lachenmeier. Standardless 1H NMR determination of pharmacologically active substances in dietary supplements and medicines that have been illegally traded over the Internet. Drug Test. Analysis 2013, 5, 400–411. https://doi.org/10.1002/dta.1367
    26. DanceSafe. Drug checking: testing kit instructions. DanceSafe.org. Available at: https://dancesafe.org/testing-kit-instructions (accessed 1 Aug 2015)
    27. RCSources. SafeOrScam definitively gone? Reddit.com. Available at: http://redd.it/3curzr (accessed 1 Aug 2015)
    28. P.A. Hays, J.F. Casale. Characterization of eleven 2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (NBOMe) derivatives and differentiation from their 3-and 4-methoxybenzyl analogues — Part II. Microgram J. 2014, 11, 3–22. Available at https://bitnest.netfirms.com/external/MicrogramJournal/11.1-4.3.22 (accessed 1 Aug 2015)
    29. D.J.M. Martins. Analysis of new psychoactive substances: A contribution to forensic chemistry, MSc thesis, Universidade do Porto: Porto, Portugal, 2014.
    30. A.C. Cheng, N. Castagnoli. Synthesis and physicochemical and neurotoxicity studies of 1-(4-substituted-2,5-dihydroxyphenyl)-2-aminoethane analogs of 6-hydroxydopamine. J. Med. Chem. 1984, 27, 513–520. https://doi.org/10.1021/jm00370a014
    31. N.V. Cozzi. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics, PhD thesis, University Of Wisconsin-Madison: Madison, WI, 1994.
    32. K. Kanai, K. Takekawa, T. Kumamoto, T. Ishikawa, T. Ohmori. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol. 2008, 26, 6–12. https://doi.org/10.1007/s11419-008-0041-2
    33. SWGDRUG. 2,5-Dimethoxyphenethylamine (2C-H). Drug monographs. 2014. Available at: https://www.swgdrug.org/Monographs/2C-H.pdf (accessed 12 Feb 2015)
    34. R.C. Shaler, J.J. Padden. Identification of hallucinogens in illicit seizures I: 2,5-Dimethoxyamphetamine. J. Pharm. Sci. 1972, 61, 1851–1855. https://doi.org/10.1002/jps.2600611142
    35. C. Clark. The identification of methoxy-N-methylamphetamines. J. Forensic Sci. 1984, 29, 1056–1071. https://doi.org/10.1520/JFS11772J
    36. Canada Parliament. Controlled Drugs and Substances Act, S.C. 1996, c. 19, 20 Jun 1996. Available at: http://laws-lois.justice.gc.ca/PDF/C-38.8.pdf (accessed 16 Aug 2014)
    37. M. Hansen, K. Phonekeo, J.S. Paine, S. Leth-Petersen, M. Begtrup, H. Bräuner-Osborne, J.L. Kristensen. Synthesis and structure–activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem. Neurosci. 2014, 5, 243–249. https://doi.org/10.1021/cn400216u
    38. J.D. Power, P. Kavanagh, J. O’Brien, M. Barry, B. Twamley, B. Talbot, G. Dowling, S.D. Brandt. Test purchase, identification and synthesis of 2-amino-1-(4-bromo-2, 5-dimethoxyphenyl)ethan-1-one (bk-2C-B). Drug Test. Analysis 2015, 7, 512–518. https://doi.org/10.1002/dta.1699
    39. Anon. Report on NMR spectroscopy of bk-2CB. bk-2C-B Drug Info. Drugs-Forum. 2013. Available at: https://isomerdesign.com/doi/1/references/NMR-report-on-BK-2CB_UK.pdf (accessed 6 Apr 2015)
    40. F.A. Ragan, S.A. Hite, M.S. Samuels, R.E. Garey. 4-Bromo-2,5-dimethoxyphenethylamine: Identification of a new street drug. J. Anal. Toxicol. 1985, 9, 91–93. https://doi.org/10.1093/jat/9.2.91
    41. T. Kanamori, H. Inoue, Y. Iwata, Y. Ohmae, T. Kishi. In vivo metabolism of 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in the rat: Identification of urinary metabolites. J. Anal. Toxicol. 2002, 26, 61–66. https://doi.org/10.1093/jat/26.2.61
    42. SWGDRUG. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B). Drug monographs. 2005. Available at: https://www.swgdrug.org/Monographs/4-bromo-2,5-dimethoxyphenethylamine.pdf (accessed 12 Feb 2015)
    43. M. Takahashi, M. Nagashima, J. Suzuki, T. Seto, I. Yasuda, T. Yoshida. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci. 2008, 54, 89–96. https://doi.org/10.1248/jhs.54.89
    44. C. Giroud, M. Augsburger, L. Rivier, P. Mangin, F. Sadeghipour, E. Varesio, J.L. Veuthey, P. Kamalaprija. 2C-B: A new psychoactive phenylethylamine recently discovered in ecstasy tablets sold on the Swiss black market. J. Anal. Toxicol. 1998, 22, 345–354. https://doi.org/10.1093/jat/22.5.345
    45. T. Ando, M. Sugiyama, N. Osaki, J. Watase. Analysis of phenethylamine analogues. Central Customs Laboratory, Ministry of Finance, Japan. 2011. Available at: http://www.customs.go.jp/ccl_search/e_info_search/drugs/r_51_07_e.pdf (accessed 1 Aug 2015)
    46. SWGDRUG. 2,5-Dimethoxy-4-chlorophenethylamine (2C-C). Drug monographs. 2014. Available at: https://www.swgdrug.org/Monographs/2C-C.pdf (accessed 12 Feb 2015)
    47. SWGDRUG. 2,5-Dimethoxy-4-iodophenethylamine (2C-I). Drug monographs. 2005. Available at: https://www.swgdrug.org/Monographs/2,5-dimethoxy-4-iodophenethylamine.pdf (accessed 12 Feb 2015)
    48. M. Ogino, T. Naiki, H. Orui, K. Kosone, M. Yamazaki. Study of method for identifying phenethylamine drugs. Central Customs Laboratory, Ministry of Finance, Japan. no date. Available at: http://www.customs.go.jp/ccl_search/e_info_search/drugs/r_50_08_e.pdf (accessed 17 Aug 2014)
    49. R.A. Glennon, M.L. Bondarev, N. Khorana, R. Young, J.A. May, M.R. Hellberg, M.A. McLaughlin, N.A. Sharif. β-Oxygenated analogues of the 5-HT2A serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem. 2004, 47, 6034–6041. https://doi.org/10.1021/jm040082s
    50. SWGDRUG. 25B-NBOMe. Drug monographs. 2013. Available at: https://www.swgdrug.org/Monographs/25B-NBOMe.pdf (accessed 12 Feb 2015)
    1. D. Zuba, K. Sekuła, A. Buczek. 25C-NBOMe – New potent hallucinogenic substance identified on the drug market. Forensic Sci. Int. 2013, 227, 7–14. https://doi.org/10.1016/j.forsciint.2012.08.027
    2. SWGDRUG. 25C-NBOMe. Drug monographs. 2012. Available at: https://www.swgdrug.org/Monographs/25C-NBOMe.pdf (accessed 12 Feb 2015)
    3. G. Serpelloni, T. Macchia, C. Locatelli, C. Rimondo, C. Seri. 25I-NBOMe. New drugs-Nuove sostanze psicoattive. Dipartimento Politiche Antidroga. 2013. Available at: https://isomerdesign.com/Cdsa/IT/3.3/843-854.pdf (accessed 12 Feb 2015)
    4. SWGDRUG. 25I-NBOMe. Drug monographs. 2014. Available at: https://www.swgdrug.org/Monographs/25I-NBOMe.pdf (accessed 12 Feb 2015)
    5. D.E. Nichols, S.P. Frescas, B.R. Chemel, K.S. Rehder, D. Zhong, A.H. Lewin. High specific activity tritium-labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): A high-affinity 5-HT2A receptor-selective agonist radioligand. Bioorg. Med. Chem. 2008, 16, 6116–6123. https://doi.org/10.1016/j.bmc.2008.04.050
    6. D.E. Nichols. 25I-NBOMe 1H NMR spectrum. Forendex. Southern Association of Forensic Scientists (SAFS). 2012. Available at: https://bitnest.netfirms.com/external/Reports/Forendex/25I-NBOMe (accessed 17 Aug 2014)
    7. D.E. Nichols, M.F. Sassano, A.L. Halberstadt, L.M. Klein, S.D. Brandt, S.P. Elliott, W.J. Fiedler. N-Benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem. Neurosci. 2015, 6, 1165–1175. https://doi.org/10.1021/cn500292d
    8. E. Pretsch. Structure determination of organic compounds: tables of spectral data. Springer, Berlin, 2009. https://doi.org/10.1007/978-3-540-93810-1
    9. R.A. Allred. Spectral characterization of 2,4-dimethoxy-3-methylphenethylamine and comparison to 2,5-dimethoxy-4-methylphenethylamine (“2C-D”). Microgram J. 2005, 3, 16–26. Available at: https://bitnest.netfirms.com/external/MicrogramJournal/3.1-2.16.26 (accessed 1 Aug 2015)
    10. D. Zuba, K. Sekuła. Identification and characterization of 2,5-dimethoxy-3,4-dimethyl-β-phenethylamine (2C-G) – A new designer drug. Drug Test. Analysis 2013, 5, 549–559. https://doi.org/10.1002/dta.1396
    11. SWGDRUG. 2,5-Dimethoxy-4-ethylphenethylamine (2C-E). Drug monographs. 2014. Available at: https://www.swgdrug.org/Monographs/2C-E.pdf (accessed 12 Feb 2015)
    12. G. Boatto, M.A. Pirisi, L. Burrai, E. Baralla, M.P. Demontis, M.V. Varoni, M. Nieddu. An LC–MS–MS method for quantitation of four new phenethylamines (BOX series) in plasma: in vivo application. Forensic Toxicol. 2014, 32, 75–81. https://doi.org/10.1007/s11419-013-0204-7
    13. M.A. Torres, B. Cassels, M.C. Rezende. The Preparation of Potentially Psychoactive β-Alkoxyphenethylamines. Synth. Commun. 1995, 25, 1239–1247. https://doi.org/10.1080/00397919508012687
    14. D. Zuba, K. Sekuła. Analytical characterization of three hallucinogenic N-(2-methoxy)benzyl derivatives of the 2C-series of phenethylamine drugs. Drug Test. Analysis 2013, 5, 634–645. https://doi.org/10.1002/dta.1397
    15. SWGDRUG. 25E-NBOMe. Drug monographs. 2013. Available at: https://www.swgdrug.org/Monographs/25E-NBOMe.pdf (accessed 12 Feb 2015)
    16. A.C. Cheng, N. Castagnoli. Synthesis and physicochemical and neurotoxicity studies of 1-(4-substituted-2,5-dihydroxyphenyl)-2-aminoethane analogs of 6-hydroxydopamine. J. Med. Chem. 1984, 27, 513–520. https://doi.org/10.1021/jm00370a014
    17. N. Machiko, S. Takako, M. Takahashi, H. Suzuki, I. Yasuda. Spectrum data of the 3rd governor-designated drugs and the analyses of uncontrolled drugs purchased Apr. 2005–Mar. 2006. Tokyo Metropolitan Institute of Public Health. 2006. Available at: http://www.tokyo-eiken.go.jp/assets/issue/journal/2006/rep.html
    18. SWGDRUG. 2,5-Dimethoxy-4-ethylthiophenylamine (2C-T-2). Drug monographs. 2005. Available at: https://www.swgdrug.org/Monographs/2,5-dimethoxy-4-ethylthiophenylamine.pdf (accessed 12 Feb 2015)
    19. K. Doi, M. Miyazawa, H. Fujii, T. Kojima. Analysis of the chemical drugs among structural isomer. Yakugaku Zasshi 2006, 126, 815–823. https://doi.org/10.1248/yakushi.126.815
    20. SWGDRUG. 2,5-Dimethoxy-4-n-propylthiophenethylamine (2C-T-7). Drug monographs. 2014. Available at: https://www.swgdrug.org/Monographs/2,5-dimethoxy-4-n-propylthiophenethylamine.pdf (ac­cessed 12 Feb 2015)
    21. A. Gallardo-Godoy, A. Fierro, T.H. McLean, M. Castillo, B.K. Cassels, M. Reyes-Parada, D.E. Nichols. Sulfur-substituted α-alkyl phenethylamines as selective and reversible MAO-A inhibitors: biological activities, CoMFA analysis, and active site modeling. J. Med. Chem. 2005, 48, 2407–2419. https://doi.org/10.1021/jm0493109
    22. D. Trachsel. Synthesis of novel (phenylalkyl)amines for the investigation of structure-activity relationships, Part 3. Helv. Chim. Acta 2003, 86, 2754–2759. https://doi.org/10.1002/hlca.200390224
    23. B. Meyers-Riggs. Leminger’s scalines. countyourculture. Rational exploration of the underground. Available at: https://isomerdesign.com/countyourculture/2012/05/04/leminger-allylescaline/ (accessed 17 Oct 2021)
    24. M. Schulze. Synthesis of 2-arylethylamines by the Curtius rearrangement. Synth. Commun. 2010, 40, 1461–1476. http://doi.org/10.1080/00397910903097302
    25. M. Kohno, S. Sasao, S.-I. Murahashi. Synthesis of phenethylamines by hydrogenation of β-nitrostyrenes. Bull. Chem. Soc. Jpn. 1990, 63, 1252–1254. https://doi.org/10.1246/bcsj.63.1252
    26. J.A. Sintas, A.A. Vitale. Synthesis of derivatives of [I-131] phenylalkylamines for brain mapping. J. Labelled Compd. Radiopharm. 1998, 41, 53–61. https://doi.org/10.1002/(SICI)1099-1344(199801)41:1<53::AID-JLCR53>3.0.CO;2-K
    27. E. Alacid, C. Nájera. Regioselective Heck reaction of N-vinylphthalimide: A general strategy for the synthesis of (E)-N-styrylphthalimides and phenethylamines. Adv. Synth. Catal. 2008, 350, 1316–1322. https://doi.org/10.1002/adsc.200800074
    28. D. Trachsel. Synthese von neuen (phenylalkyl)aminen zur untersuchung von struktur-aktivitätsbeziehungen, Mitteilung 1, Mescalin derivate. Helv. Chim. Acta 2002, 85, 3019–3026. https://doi.org/10.1002/1522-2675(200209)85:9<3019::AID-HLCA3019>3.0.CO;2-4
    29. K. Tsujikawa, T. Kanamori, K. Kuwayama, H. Miyaguchi, Y. Iwata, H. Inoue. Analytical Profiles for 3,4,5-, 2,4,5-, and 2,4,6-Trimethoxy­amphetamine. Microgram J. 2006, 4, 12–23. Available at: https://bitnest.netfirms.com/external/MicrogramJournal/4.1-4.12.23 (accessed 1 Aug 2015)
    30. R.J. Abraham, M. Mobli, R.J. Smith. 1H Chemical shifts in NMR: Part 19. Carbonyl anisotropies and steric effects in aromatic aldehydes and ketones. Magn. Reson. Chem. 2003, 41, 26–36. https://doi.org/10.1002/mrc.1125
    31. A.M. Deveau, T.L. Macdonald. Practical synthesis of biaryl colchicinoids containing 3′,4′-catechol ether-based A-rings via Suzuki cross-coupling with ligandless palladium in water. Tetrahedron Lett. 2004, 45, 803–807. https://doi.org/10.1016/j.tetlet.2003.11.016
    32. J.F. Casale, P.A. Hays. Characterization of eleven 2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (NBOMe) derivatives and differentiation from their 3- and 4-methoxybenzyl analogues — Part I. Microgram J. 2012, 9, 84–109. Available at https://bitnest.netfirms.com/external/MicrogramJournal/11.1-4.3.22 (accessed 1 Aug 2015)
    33. T. Kappe, S. Ajili, W. Stadlbauer. Aktive malonester als synthons für heterocyclen: Eine methode zur herstellung von 4-hydroxy-2(1H)-pyridonen. J. Heterocycl. Chem. 1988, 25, 463–468. http://doi.org/10.1002/jhet.5570250221
    34. G.P. Robertson, S.D. Mikhailenko, K. Wang, P. Xing, M.D. Guiver, S. Kaliaguine. Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication. J. Membr. Sci. 2003, 219, 113–121. https://doi.org/10.1016/S0376-7388(03)00193-5
    35. A. Zawadzki. Bromo dragonfly being sold as 2CB-Fly. Bluelight.org. 22 September 2014. Available at: https://www.bluelight.org/xf/threads/warning-bromo-dragonfly-being-sold-as-2cb-fly.468561/ (accessed 22 Sep 2014)
    36. S.A. Richards, J.C. Hollerton. Essential practical NMR for organic chemistry. John Wiley, Chichester, West Sussex, U.K, 2011.
    37. Health Canada. Proposal regarding the scheduling of 2C-phenethylamines under the Controlled Drugs and Substances Act and its regulations. 1 Aug 2015. Available at: http://www.hc-sc.gc.ca/hc-ps/consult/phenethylamines-eng.php (accessed 1 Aug 2015)
    38. Health Canada. Proposed order amending Schedule III to the Controlled Drugs and Substances Act to add 2C-phenethylamines and their salts, derivatives, and isomers and the salts of their derivatives and isomers. C. Gaz. I 2015, 149, 2158–2159. Available at: http://gazette.gc.ca/rp-pr/p1/2015/2015-01-31/html/notice-avis-eng.php#na1 (accessed 1 Aug 2015)
    39. A.T. Shulgin, A. Shulgin. Barriers to Research, in TiHKAL: The continuation, Transform Press, Berkeley, CA, 1997, pp. 346–358.
    40. J. Wiley, J. Marusich, J.W. Huffman, R.L. Balster, B. Thomas. Hijacking of basic research: The case of synthetic cannabinoids. RTI Press. 2011. Available at: http://www.rti.org/publications/rtipress.cfm?pubid=17971 (accessed 1 Aug 2015)
    41. D.J. Nutt, L.A. King, D.E. Nichols. Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nat. Rev. Neurosci. 2013, 14, 577–585. https://doi.org/10.1038/nrn3530
    42. M.P. Monaghan. Evidence versus politics: Exploiting research in UK drug policy making? Policy Press. University of Bristol, Bristol, U.K. 2011.
    43. L.A. King, D.J. Nutt, N. Singleton, R. Howard. Analogue controls: an imperfect law. UK Drug Policy Commission, Independent Scientific Committee on Drugs. 2012. Available at: http://www.ukdpc.org.uk/wp-content/uploads/Analogue-control-19.06.12.pdf (accessed 1 Aug 2015)
    44. F. Measham. Social issues in the use of novel psychoactive substances: differentiated demand and ideological supply, in Novel Psychoactive Substances (Eds: P.I. Dargan, D.M. Wood), Academic Press, Boston, MA 2013, pp. 105–127.
    45. N.L. Ginsberg. The politics of research: Science’s role in ending the drug war. MAPS. Available at: http://www.maps.org/bulletin-items/387-bulletin-spring-2015/5668-the-politics-of-research-science%E2%80%99s-role-in-ending-the-drug-war (accessed 1 Aug 2015)