2,5-Dimethoxy-4-n-propylthiophenethylamine
#43 2C-T-7 SYNTHESIS: To a solution of 3.4 g of KOH pellets in 50 mL hot MeOH, there was added a mixture of 6.8 g 2,5-dimethoxythiophenol (see under the recipe for for its preparation) and 7.4 g n-propylbromide dissolved in 20 mL MeOH. The reaction was exothermic, with the deposition of white solids. This was heated on the steam bath for 0.5 h, added to 800 mL H2O, additional aqueous NaOH added until the pH was basic, and extracted with 3×75 mL CH2Cl2. The pooled extracts were washed with dilute NaOH, and the solvent removed under vacuum. The residue was 2,5-dimethoxyphenyl n-propyl sulfide which was obtained as a pale yellow oil, and which weighed 8.9 g. It had a light pleasant fruity smell, and was sufficiently pure for use in the next reaction without distillation.
A mixture of 14.4 g POCl3 and 13.4 g N-methylformanilide was heated for 10 min on the steam bath. To this claret-colored solution was added 8.9 g of 2,5-dimethoxyphenyl n-propyl sulfide, and the mixture heated an additional 25 min on the steam bath. This was then added to 800 mL of well-stirred warm H2O (pre-heated to 55 °C) and the stirring continued until the oily phase had completely solidified (about 15 minutes). The resulting brown sugar-like solids were removed by filtration, and washed with additional H2O. After sucking as dry as possible, they were dissolved in an equal weight of boiling MeOH which, after cooling in an ice-bath, deposited pale ivory colored crystals. After filtration, modest washing with cold MeOH, and air drying to constant weight, there was obtained 8.3 g of 2,5-dimethoxy-4-(n-propylthio)benzaldehyde with a mp of 73–76 °C. Recrystallization from 2.5 volumes of MeOH provided a white analytical sample with mp 76–77 °C. The NMR spectrum in CDCl3 was textbook perfect, with the two aromatic protons showing singlet signals at 6.81 and 7.27 ppm, giving assurance that the assigned location of the introduced aldehyde group was correct.
To a solution of 4.0 g 2,5-dimethoxy-(n-propylthio)benzaldehyde in 20 g of nitromethane there was added 0.23 g of anhydrous ammonium acetate, and the mixture was heated on the steam bath for 1 h. The clear orange solution was decanted from some insoluble material and the excess nitromethane removed under vacuum. The orange-yellow crystalline material that remained was crystallized from 70 mL boiling IPA which, on slow cooling, deposited 2,5-dimethoxy-β-nitro-4-n-propylthiostyrene as orange crystals. After their removal by filtration and air-drying to constant weight, they weighed 3.6 g, and had a mp of 120–121 °C. Anal. (C13H17NO4S) C,H.
A solution of LAH (132 mL of a 1 M solution in THF) was cooled, under He, to 0 °C with an external ice bath. With good stirring there was added 3.5 mL 100% H2SO4 dropwise, to minimize charring. This was followed by the addition of 8.4 g 2,5-dimethoxy-β-nitro-4-n-propylthiostyrene in 50 mL anhydrous THF. There was an immediate loss of color. After a few min further stirring, the temperature was brought up to a gentle reflux on the steam bath, then all was cooled again to 0 °C. The excess hydride was destroyed by the cautious addition of IPA (21 mL required) followed by sufficent 5% NaOH to give a white granular character to the oxides, and to assure that the reaction mixture was basic (15 mL was used). The reaction mixture was filtered and the filter cake washed first with THF and then with IPA. The filtrate and washes were combined and stripped of solvent under vacuum providing about 6 g of a pale amber oil. Without any further purification, this was distilled at 140–150 °C at 0.25 mm/Hg to give 4.8 g of product as a clear white oil. This was dissolved in 25 mL IPA, and neutralized with concentrated HCl forming immediate crystals of the hydrochloride salt in the alcohol solvent. An equal volume of anhydrous Et2O was added, and after complete grinding and mixing, 2,5-dimethoxy-4-n-propylthiophenethylamine hydrochloride (2C-T-7) was removed by filtration, Et2O washed, and air dried to constant weight. The resulting spectacular white crystals weighed 5.2 g.
DOSAGE: 10–30 mg.
DURATION: 8–15 h.
QUALITATIVE COMMENTS: (with 20 mg) “A wonderful day of integration and work. Took about 2 hours for the onset. Some nausea on and off—that seemed to cycle periodically throughout the day. Visuals were great, much like but less sparkly. Lots of movement and aliveness—velvety appearance and increased depth perception. Neck and shoulder tension throughout the day along with legs. I would periodically notice extreme tightness of muscles, and then relax. Working was very integrative. Back and forth constantly between wonderful God-space—similar to but more grounded—then always back to sadness. I felt that it really showed me where I was unfinished, but with self-loving and tolerance. Tremendous processing and letting go. Seeing things very clearly and also able to laugh at my trips. Lots of singing. In spite of shoulder tension, vocal freedom and facility were very high. I felt my voice integrated and dropped in a way it never had before, and that remained for several days. Able to merge body, voice, psyche and emotions with music and then let go of it as a role. I also realized and gave myself permission to do whatever it takes to get free. I let go of Dad with tragic arias. The next day I let go of Mom by singing Kaddish for her, and merging with it.”
(with 20 mg) “I lay down with music, and become engrossed with being as still as possible. I feel that if I can be totally, completely still, I will hear the inner voice of the universe. As I do this, the music becomes incredibly beautiful. I see the extraordinary importance of simply listening, listening to everything, to people and to nature, with wide open receptivity. Something very, very special happens at the still point, so I keep working on it. When I become totally still, a huge burst of energy is released. And it explodes so that it takes enormous effort to quiet it all down in order to be still again. Great fun.”
(with 25 mg) “This was a marvelous and strange evening. This 2C-T-7 is good and friendly and wonderful as I remember it. I think it is going to take the place of in my heart. It is a truly good material. I got involved with a documentary on television. It was about certain people of Bolivia, people living in the high mountains and about a small village which—perhaps alone among all the places in the country—maintains the old Inca ways, the old traditions, the old language. Which is, I gather, against the law in Bolivia. It showed a yearly meeting of shamans and it was quite clear that hallucinogens played a major part in this meeting. The shaman faces, male and female, were startling in their intensity and earthy depth. The Virgin Mary is worshipped as another version of the ancient Pacha Mama, the Earth Mother. Wonderful dark, vivid look at places and people who are not usually to be seen or even known about.”
(with 30 mg) “The visuals have an adaptable character to them. I can use them to recreate any hallucinogenic substance I have known and loved. With open eyes, I can go easily into flowing visuals, or into the warm earth world of Peyote, or I can stop them altogether. With closed eyes, there are Escher-like graphics with a lot of chiaroscuro, geometric patterns with oppositional play of sculptured light and dark values. Green light.”
EXTENSIONS AND COMMENTARY: If all the phenethylamines were to be ranked as to their acceptability and their intrinsic richness, 2C-T-7 would be right up there near the top, along with , , and . The range is intentionally extended on the lower side to include 10 milligrams, as there have been numerous people who have found 10 or so milligrams to be quite adequate for their tastes.
One Tweetio related to 2C-T-7 has been made and evaluated. This is the 2-EtO-homologue of 2C-T-7, 2-ethoxy-5-methoxy-4-n-propylthiophenethylamine, or . The benzaldehyde (2-ethoxy-5-methoxy-4-(n-propylthio)benzaldehyde had a melting point of 69–71 °C, the nitrostyrene intermediate a melting point of 106–106.5 °C, and the final hydrochloride a melting point of 187–189 °C. At the 20 milligram level, the effects were felt quickly, and the eyes-closed visuals were modest but real. It was very short-lived, with baseline recovery at about the fifth hour. The next day there was an uncomfortable headache which seemed on an intuitive level to be an after-effect of the compound.
The unusual properties of a number of N-methyl-N-isopropyltryptamines suggested the possibility of something like a similar set of N-methyl-N-isopropylphenethylamines. Why not try one from 2C-T-7? The thought was, maybe N-methylate this compound, then put on an isopropyl group with reductive alkylation, using acetone as the carbon source and sodium cyanoborohydride. Towards this end, the free base of 2C-T-7 (from one gram of the hydrochloride) was refluxed for 2 h in 1.3 g butyl formate, and on removing the solvent/reactant the residue spontaneously crystallized. This formamide (0.7 g) was reduced with lithium hydride in cold THF to provide 2,5-dimethoxy-4-n-propyl-N-methylphenethylamine, , which distilled at 150–170 °C at 0.4 mm/Hg. A very small amount of the hydrochloride salt was obtained (65 milligrams) and it had a brown color. Too small an amount of an impure product; the entire project was dropped.
13 May 2016 · ·

About PiHKAL · info

This version of Book II of PiHKAL is based on the Erowid online version, originally transcribed by Simson Garfinkle and converted into HTML by Lamont Granquist. I drew also on “Tyrone Slothrop’s” (Unfinished) Review of PIHKAL to enumerate the many analogues mentioned in PiHKAL but not described at length. Many, many others have since been added.
I have tried here to expunge any artifacts introduced by the earlier transcriptions and restore the typographic niceties found in the printed edition. I’ve also made minor changes to some chemical names in line with current nomenclature practice. Typically the change is little more than expanding a prefix or setting it in italics. The history page has further details.

Cautionary note

“At the present time, restrictive laws are in force in the United States and it is very difficult for researchers to abide by the regulations which govern efforts to obtain legal approval to do work with these compounds in human beings.
“No one who is lacking legal authorization should attempt the synthesis of any of the compounds described in these files, with the intent to give them to man. To do so is to risk legal action which might lead to the tragic ruination of a life. It should also be noted that any person anywhere who experiments on himself, or on another human being, with any of the drugs described herein, without being familiar with that drug’s action and aware of the physical and/or mental disturbance or harm it might cause, is acting irresponsibly and immorally, whether or not he is doing so within the bounds of the law.”
Alexander T. Shulgin

Copyright notice

The copyright for Book I of PiHKAL has been reserved in all forms and it may not be distributed. Book II of PiHKAL may be distributed for non-commercial reproduction provided that the introductory information, copyright notice, cautionary notice and ordering information remain attached.

Ordering information

PiHKAL is the extraordinary record of the authors’ years exploring the chemistry and transformational power of phenethylamines. This book belongs in the library of anyone seeking a rational, enlightened and candid perspective on psychedelic drugs.
Though Sasha and Ann have put Book II of PiHKAL in the public domain, available to anyone, I strongly encourage you to buy a copy. We owe them — and there’s still nothing quite like holding a real book in your hands.
PiHKAL (ISBN 0-9630096-0-5) is available for US$24.50 (plus $10 domestic first-class shipping) from Transform Press.
Transform Press,
Box 13675
Berkeley, CA 94701

510 · 934 · 4930 (voice)
510 · 934 · 5999 (fax)