#166 2T-MMDA-3a SYNTHESIS: A solution of 30 g in 25 mL cyclohexylamine was brought to a boil on a hot plate, until there was no more water apparently being evolved. The resulting melt was distilled giving 45 g of N-cyclohexyl-3,4-methylenedioxybenzylideneimine boiling at 114–135 °C at 0.2 mm/Hg as a light yellow oil.
In 400 mL anhydrous Et2O there was dissolved 40.3 g N-cyclohexyl-3,4-methylenedioxybenzylidenimine and 30 mL N,N,N′,N′-tetramethylethylenediamine (TMEDA). This solution was put under an inert atmosphere, and with good stirring brought to -78 °C with an external dry ice/acetone bath, which produced a light white crystalline precipitate. There was then added 120 mL of 1.55 M butyllithium, which produced an immediate darkening and a dissolving of the fine precipitate. After 10 min stirring, there was added 20 mL of dimethyl disulfide. The color immediately vanished and there was the formation of a white precipitate. The temperature was allowed to return to ice bath temperature, and then all volatiles were removed under vacuum. The residue was poured into 500 mL H2O and acidified with HCl. After heating for 1 h on the steam bath, the reaction mixture was cooled, producing a gummy solid that was shown to be a complex mixture by TLC. But there was a single fluorescent spot that was the product aldehyde and it was pursued. Extraction with 3×75 mL CH2Cl2 gave, after pooling and stripping of the solvent, a residue which was extracted with four separate passes, each with 75 mL boiling hexane. The deposited crystals from each were separated, and all recrystallized from boiling MeOH to give 3.3 g of 3,4-methylenedioxy-2-(methylthio)benzaldehyde, with a mp of 77–80 °C.
To a solution of 3.0 g 3,4-methylenedioxy-2-(methylthio)benzaldehyde in 25 mL IPA there was added 2 mL nitroethane, 0.11 mL ethylenediamine and 0.1 mL acetic acid. This was held at reflux temperature for 18 h, and the solvents removed under vacuum. The residue showed a total of eight spots on TLC analysis, extending from the origin to the spot of the product nitrostyrene itself. Trituration of this residue under 25 mL MeOH gave a crude nitrostyrene which was, after separation, recrystallized from 20 mL of boiling MeOH. The final isolation of 1-(3,4-methylenedioxy-2-methylthiophenyl)-2-nitropropene gave 0.5 g of a product that had a mp of 94–95 °C. The mixed mp with the nitrostyrene from piperonal (mp 97–98 °C) was soundly depressed (mp 67–79 °C).
A solution of AH was prepared by the treatment of a solution of 0.5 g LAH in 10 mL THF, at 0 °C and under He, with 0.32 mL 100% H2SO4. A solution of 0.45 g 1-(3,4-methylenedioxy-2-methylthiophenyl)-2-nitropropene in 10 mL THF was added dropwise, and the stirring was continued for 1 h. After a brief period at reflux, the reaction mixture was returned to room temperature, and the excess hydride destroyed by the addition of IPA. The salts were converted to a filterable mass by the addition of 5% NaOH, and after filtering and washing with IPA, the combined filtrate and washings were stripped of solvent under vacuum. The residue was dissolved in dilute H2SO4 which was washed with 3×75 mL CH2Cl2. After alkalinification with 25% aqueous NaOH, the product was extracted with 2×75 mL CH2Cl2. The extracts were pooled, and the solvent removed under vacuum. Distillation of the residue gave a fraction that boiled at 137–150 °C at 0.3 mm/Hg and weighed 0.3 g. This was dissolved in 1.6 mL IPA, neutralized with 6 drops of concentrated HCl, warmed to effect complete solution, and diluted with 4 mL of anhydrous Et2O. The formed crystals were collected by filtration, and after Et2O washing and air drying to constant weight, gave 0.3 g 3,4-methylenedioxy-2-methylthioamphetamine hydrochloride (2T-MMDA-3a).
DOSAGE: greater than 12 mg.
DURATION: unknown.
EXTENSIONS AND COMMENTARY: And visions of sugar-plums danced through their heads. There are many trisubstituted amphetamine analogues that have been documented with varying degrees of activity. There are six TMA’s and if one were to systematically make every possible thio-analogue of each of these, there would be a total of sixteen thio-analogues of the . Let’s go for it, said I to myself. Let’s get the 16 thio analogues in hand. That is where the action’s at. But hold on a minute. Each and every isomer has, by definition, three possible thio analogues, so there are eighteen more possible thio compounds just with them. Sure, let’s make them all! It will be an unprecedented coup for students of structure-activity relationships. Let’s whip out some 34 compounds, and test them all, and maybe we will begin to understand just why those which are active are, indeed, active. And maybe not.
Anyway, this was the most manic of all manic programs ever, involving thio-analogues. And it was totally compelling. Another synthetic clue stemmed from the fact that vanillin also formed the cyclic carbonate with sodium thiocyanate and it could, in principle, be brought around in time to 3-methoxy-5,4-methylenethiooxyamphetamine, or 5T-MMDA. That made two of the magic analogues, and only some 32 to go. What a marvelous task for a graduate student. (What a horribly dull task for a graduate student.) But in any case there was no graduate student, and this appeared to be the end of the line. Some day, let’s make all these possibilities. A magnificent tour-de-force, but at the present time, not worth the effort. Other directions are more exciting and more appealing.
A last note of simple humor. One of the compounds used in this preparation was N,N,N′,N′-tetramethylethylenediamine, which has been abbreviated TMEDA. There is a pattern, within any active inner clique of research chemists intently pursuing a goal, to begin condensing complex comcepts into deceptively simple terms. We “MOM-ed the hydroxy group of the T-BOC-ed amine.” I have recently heard the above tetramethyl monster referred to in the chemist’s jargon as a pronounced, rather than a spelled out, word. It sounds very much like “tomato” spoken by a native of the Bronx.
13 Jun 2018 · ·

About PiHKAL · info

This version of Book II of PiHKAL is based on the Erowid online version, originally transcribed by Simson Garfinkle and converted into HTML by Lamont Granquist. I drew also on “Tyrone Slothrop’s” (Unfinished) Review of PIHKAL to enumerate the many analogues mentioned in PiHKAL but not described at length. Many, many others have since been added.
I have tried here to expunge any artifacts introduced by the earlier transcriptions and restore the typographic niceties found in the printed edition. I’ve also made minor changes to some chemical names in line with current nomenclature practice. Typically the change is little more than expanding a prefix or setting it in italics. The history page has further details.

Cautionary note

“At the present time, restrictive laws are in force in the United States and it is very difficult for researchers to abide by the regulations which govern efforts to obtain legal approval to do work with these compounds in human beings.
“No one who is lacking legal authorization should attempt the synthesis of any of the compounds described in these files, with the intent to give them to man. To do so is to risk legal action which might lead to the tragic ruination of a life. It should also be noted that any person anywhere who experiments on himself, or on another human being, with any of the drugs described herein, without being familiar with that drug’s action and aware of the physical and/or mental disturbance or harm it might cause, is acting irresponsibly and immorally, whether or not he is doing so within the bounds of the law.”
Alexander T. Shulgin

Copyright notice

The copyright for Book I of PiHKAL has been reserved in all forms and it may not be distributed. Book II of PiHKAL may be distributed for non-commercial reproduction provided that the introductory information, copyright notice, cautionary notice and ordering information remain attached.

Ordering information

PiHKAL is the extraordinary record of the authors’ years exploring the chemistry and transformational power of phenethylamines. This book belongs in the library of anyone seeking a rational, enlightened and candid perspective on psychedelic drugs.
Though Sasha and Ann have put Book II of PiHKAL in the public domain, available to anyone, I strongly encourage you to buy a copy. We owe them — and there’s still nothing quite like holding a real book in your hands.
PiHKAL (ISBN 0-9630096-0-5) is available for US$24.50 (plus $10 domestic first-class shipping) from Transform Press.
Transform Press,
Box 13675
Berkeley, CA 94701

510 · 934 · 4930 (voice)
510 · 934 · 5999 (fax)