Nichols, DE; Frescas, SP; Chemel, BR; Rehder, KS; Zhong, D; Lewin, AH. High specific activity tritium-labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): A high-affinity 5-HT2A receptor-selective agonist radioligand. Bioorg. Med. Chem., 1 Jan 2008, 16 (10), 6116–6123. 251 kB. https://doi.org/10.1016/j.bmc.2008.04.050
Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #25I-NBOMe
Ettrup, A; Hansen, M; Santini, MA; Paine, J; Gillings, N; Palner, M; Lehel, S; Herth, MM; Madsen, J; Kristensen, JL; Begtrup, M; Knudsen, GM. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur. J. Nucl. Med. Mol. Imaging, 1 Apr 2011, 38 (4), 681–693. 752 kB. https://doi.org/10.1007/s00259-010-1686-8
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #236 In German. MS,NMR,IR
Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133 #32
Anon. JW, Personal communication of unpublished research. 1 Dec 2011.
Braden, MR; Parrish, JC; Naylor, JC; Nichols, DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol. Pharmacol., 1 Jan 2006, 70 (6), 1956–1964. 361 kB. https://doi.org/10.1124/mol.106.028720
Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. https://doi.org/10.1007/s10822-010-9400-2
Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB.
Hansen, M. Design and synthesis of selective serotonin receptor agonists for positron emission tomography imaging of the brain. Ph. D. Thesis, University of Copenhagen, 16 Dec 2012. 7.9 MB. #2.1 NMR
Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.
Casale, JF; Hays, PA. Characterization of eleven 2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (NBOMe) derivatives and differentiation from their 3- and 4-methoxybenzyl analogues—Part I. Microgram J., 1 Jan 2012, 9 (2), 84–109. 4.6 MB. #16: 25I-NB2OMe GC,MS,IR
Ettrup, A; Palner, M; Gillings, N; Santini, MA; Hansen, M; Kornum, BR; Rasmussen, LK; Nagren, K; Madsen, J; Begtrup, M; Knudsen, GM. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET. J. Nucl. Med., 1 Nov 2010, 51 (11), 1763–1770. 548 kB. https://doi.org/10.2967/jnumed.109.074021
Heim, R; Elz, S. Novel extremely potent partial 5-HT2A-receptor agonists: Successful application of a new structure-activity concept. Arch. Pharm. Pharm. Med. Chem., , 333 (Suppl. 1), 18. 566 kB. Poster abstract
Heim, R; Pertz, HH; Elz, MZS. Stereoselective synthesis, absolute configuration and 5-HT2A-receptor agonism of chiral 2-methoxybenzylamines. Arch. Pharm. Pharm. Med. Chem., , 335 (Suppl. 1), 82. 573 kB. #5 Poster abstract
EMCDDA. Report on the risk assessment of 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25I-NBOMe), European Monitoring Centre for Drugs and Drug Addiction, Lisbon, . 500 kB.
Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. https://doi.org/10.1007/s11064-014-1253-y
Nichols, DE; Sassano, MF; Halberstadt, AL; Klein, LM; Brandt, SD; Elliott, SP; Fiedler, WJ. N-Benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem. Neurosci., 15 Jul 2015, 6 (7), 1165-1175. 406 kB. https://doi.org/10.1021/cn500292d
Brandt, SD; Elliott, SP; Kavanagh, PV; Dempster, NM; Meyer, MR; Maurer, HH; Nichols, DE. Analytical characterization of bioactive N-benzyl-substituted phenethylamines and 5-methoxytryptamines. Rapid Commun. Mass Spectrom., 2 Mar 2015, 29 (7), 573–584. 2.2 MB. https://doi.org/10.1002/rcm.7134
Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. BLOTTER, 1 Aug 2015, 1 (1). 2.6 MB. https://doi.org/10.16889/isomerdesign-1
Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. Supplementary Data. BLOTTER, 1 Aug 2015, 1 (1). 11.9 MB. https://doi.org/10.16889/isomerdesign-1-supp
Hays, PA; Casale, JF. Characterization of eleven 2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (NBOMe) derivatives and differentiation from their 3-and 4-methoxybenzyl analogues - Part II. Microgram J., 1 Jan 2014, 11 (1–4), 3–22. 8.1 MB. #16: 25I-NB2OMe NMR
Prabhakaran, J; Underwood, MD; Kumar, JSD; Simpson, NR; Kassir, SA; Bakalian, MJ; Mann, JJ; Arango, V. Synthesis and in vitro evaluation of [18F]FECIMBI-36: A potential agonist PET ligand for 5-HT2A/2C receptors. Bioorg. Med. Chem. Lett., 15 Sep 2015, 25 (18), 3933–3936. 603 kB. https://doi.org/10.1016/j.bmcl.2015.07.034
Kaizaki-Mitsumoto, A; Noguchi, N; Yamaguchi, S; Odanaka, Y; Matsubayashi, S; Kumamoto, H; Fukuhara, K; Funada, M; Wada, K; Numazawa, S. Three 25-NBOMe-type drugs, three other phenethylamine-type drugs (25I-NBMD, RH34, and escaline), eight cathinone derivatives, and a phencyclidine analog MMXE, newly identified in ingredients of drug products before they were sold on the drug market. Forensic Toxicol., 1 Jan 2016, 34 (1), 108–114. 854 kB. https://doi.org/10.1007/s11419-015-0293-6
Nielsen, LM; Holm, NB; Leth-Petersen, S; Kristensen, JL; Olsen, L; Linnet, K. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test. Anal., 1 May 2017, 9 (5), 671-679. 553 kB. https://doi.org/10.1002/dta.2031
Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, ; pp 1–29. 826 kB. https://doi.org/10.1007/7854_2016_64
Halberstadt, AL; Geyer, MA. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology, 1 Feb 2014, 77, 200–207. 1.4 MB. https://doi.org/10.1016/j.neuropharm.2013.08.025
Wohlfarth, A; Roman, M; Andersson, M; Kugelberg, FC; Diao, X; Carlier, J; Eriksson, C; Wu, X; Konradsson, P; Josefsson, M; Huestis, MA; Kronstrand, R. 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry. Drug Test. Anal., 1 May 2017, 9 (5), 680-698. 837 kB. https://doi.org/10.1002/dta.2044
Hyperlab. Hyperlab new compounds. 29 Sep 2014. 232 kB. Note: Contains links to hyperlab.info that require elevated access/karma to follow.
Edmunds, R; Donovan, R; Reynolds, D. The analysis of illicit 25X-NBOMe seizures in Western Australia. Drug Test. Anal., 1 Apr 2018, 10 (4), 786-790. 507 kB. https://doi.org/10.1002/dta.2260
Martins, D; Barratt, MJ; Pires, CV; Carvalho, H; Ventura, M; Fornís, I; Valente, H. The detection and prevention of unintentional consumption of DOx and 25x-NBOMe at Portugal’s Boom Festival. Hum. Psychopharmacol. Clin. Exp., 1 May 2017, 32 (3), e2608. 400 kB. https://doi.org/10.1002/hup.2608
EMCDDA. New drugs in Europe, 2012, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2013. 773 kB. #32
Nichols, DE; Grob, CS. Is LSD toxic? Forensic Sci. Int., 1 Mar 2018, 284 141–145. 415 kB. https://doi.org/10.1016/j.forsciint.2018.01.006
Jensen, AA; McCorvy, JD; Leth-Petersen, S; Bundgaard, C; Liebscher, G; Kenakin, TP; Bräuner-Osborne, H; Kehler, J; Kristensen, JL. Detailed characterization of the in vitro pharmacological and pharmacokinetic properties of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine (25CN-NBOH), a highly selective and brain-penetrant 5-HT2A receptor agonist. J. Pharmacol. Exp. Ther., 1 Jun 2017, 361 (3), 441–453. 4.1 MB. https://doi.org/10.1124/jpet.117.239905 #25I-NBOMe
Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #25I-NBOMe
McGonigal, MK; Wilhide, JA; Smith, PB; Elliott, NM; Dorman, FL. Analysis of synthetic phenethylamine street drugs using direct sample analysis coupled to accurate mass time of flight mass spectrometry. Forensic Sci. Int., 1 Jun 2017, 275 83–89. 2.3 MB. https://doi.org/10.1016/j.forsciint.2017.02.025 #25I-NBOMe
EMCDDA. New drugs in Europe, 2014, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Jul 2015. 879 kB.
EMCDDA. New drugs in Europe, 2013, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Jul 2014. 311 kB.
Hansen, M; Phonekeo, K; Paine, JS; Leth-Petersen, S; Begtrup, M; Bräuner-Osborne, H; Kristensen, JL. Synthesis and structure–activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem. Neurosci., 19 Mar 2014, 5 (3), 243-249. 21.5 MB. https://doi.org/10.1021/cn400216u #1a
Zawilska, JB; Andrzejczak, D. Next generation of novel psychoactive substances on the horizon – A complex problem to face. Drug Alcohol Depend., 1 Jan 2015, 157, 1-17. 3.0 MB. https://doi.org/10.1016/j.drugalcdep.2015.09.030
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #72
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Rychert, M; Wilkins, C. What products are considered psychoactive under New Zealand's legal market for new psychoactive substances (NPS, ‘legal highs’)? Implications for law enforcement and penalties. Drug Test. Anal., 1 Aug 2016, 8 (8), 768-778. 493 kB. https://doi.org/10.1002/dta.1943
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Poklis, JL; Devers, KG; Arbefeville, EF; Pearson, JM; Houston, E; Poklis, A. Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci. Int., 1 Jan 2014, 234, e14-e20. 826 kB. https://doi.org/10.1016/j.forsciint.2013.10.015
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #65
Lum, BJ; Brophy, JJ; Hibbert, DB. Identification of 4-substituted 2-(4-x-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25X-NBOMe) and analogues by gas chromatography–mass spectrometry analysis of heptafluorobutyric anhydride (HFBA) derivatives. Aust. J. Forensic Sci., 2 Jan 2016, 48 (1), 59–73. 5.5 MB. https://doi.org/10.1080/00450618.2015.1026274 #25I-NBOMe
Adamowicz, P; Zuba, D. Discrimination among designer drug isomers by chromatographic and spectrometric methods. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 211–232. 1.1 MB.
Poklis, JL; Raso, SA; Alford, KN; Poklis, A; Peace, MR. Analysis of 25I-NBOMe, 25B-NBOMe, 25C-NBOMe and other dimethoxyphenyl-N-[(2-methoxyphenyl)methyl]ethanamine derivatives on blotter paper. J. Anal. Toxicol., 1 Oct 2015, 39 (8), 617–623. 495 kB. https://doi.org/10.1093/jat/bkv073 #25I-NBOMe
Laskowski, LK; Elbakoush, F; Calvo, J; Exantus-Bernard, G; Fong, J; Poklis, JL; Poklis, A; Nelson, LS. Evolution of the NBOMes: 25C- and 25B- Sold as 25I-NBOMe. J. Med. Toxicol., 1 Jun 2015, 11 (2), 237–241. 482 kB. https://doi.org/10.1007/s13181-014-0445-9 #25I-NBOMe
Souza, GA; Arantes, LC; Guedes, TJ; de Oliveira, AC; Marinho, PA; Muñoz, RAA; dos Santos, WTP. Voltammetric signatures of 2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamines on boron-doped diamond electrodes: Detection in blotting paper samples. Electrochem. Commun., 1 Sep 2017, 82 121–124. 748 kB. https://doi.org/10.1016/j.elecom.2017.08.001 #25I-NBOMe other
Elz, S; Kläß, T; Heim, R; Warnke, U; Pertz, HH. Development of highly potent partial agonists and chiral antagonists as tools for the study of 5-HT2A-receptor mediated functions. N-S. Arch. Pharmacol., , 365 (Suppl. 1), R29. 630 kB. #5
Baumeister, D; Barnes, G; Giaroli, G; Tracy, D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther. Adv. Psychopharmacol., 1 Aug 2014, 4 (4), 156–169. 1.1 MB. https://doi.org/10.1177/2045125314527985 #25I-NBOMe
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 n/a. 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #25I-NBOMe
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S2 Phenethylamines 25I-NBOMe
Kronstrand, R; Guerrieri, D; Vikingsson, S; Wohlfarth, A; Gréen, H. Fatal poisonings associated with new psychoactive substances. In New Psychoactive Substances : Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 495–541. 477 kB. https://doi.org/10.1007/164_2018_110 #25I-NBOMe
McCorvy, JD. Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: Insights into the molecular actions of psychedelics. Ph. D. Thesis, Purdue University, 1 Jan 2012. 3.9 MB. #INBMeO
Pertz, HH; Heim, R; Elz, S. N-Benzylated phenylethanamines are highly potent partial agonists at 5-HT2A receptors. Arch. Pharm. Pharm. Med. Chem., , 333 (Suppl. 2), 30. 583 kB. #3b-OMe Poster abstract
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #HP-021
Sasaki, R; Kato, M; Matsumoto, T; Udagawa, A; Matsuzaki, R. Analytical data of designer drugs of synthetic phenethylamines. JCCL, 1 Dec 2015, (55), 43–63. 637 kB. #3 Japanese, English abstract MS,NMR,IR,UV
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #25I-NBOMe
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 n/a. 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #25i-NBOMe
Poulie, CBM; Jensen, AA; Halberstadt, AL; Kristensen, JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem. Neurosci., 12 Nov 2019, n/a. 338 kB. https://doi.org/10.1021/acschemneuro.9b00528 #25I-NBOMe
Lützen, E; Holtkamp, M; Stamme, I; Schmid, R; Sperling, M; Pütz, M; Karst, U. Multimodal imaging of hallucinogens 25C- and 25I-NBOMe on blotter papers. Drug Test. Anal., 17 Dec 2019, 12 (4), 465-471. 9.6 MB. https://doi.org/10.1002/dta.2751 #25I-NBOMe LC,MS,other
Palamar, JJ; Acosta, P. A qualitative descriptive analysis of effects of psychedelic phenethylamines and tryptamines. Hum. Psychopharmacol. Clin. Exp., 1 Jan 2020, 35 (1), e2719. 764 kB. https://doi.org/10.1002/hup.2719 #25I-NBOMe
Elbardisy, HM; Foster, CW; Marron, J; Mewis, RE; Sutcliffe, OB; Belal, TS; Talaat, W; Daabees, HG; Banks, CE. Quick test for determination of N-bombs (Phenethylamine derivatives, NBOMe) using high-performance liquid chromatography: A comparison between photodiode array and amperometric detection. ACS Omega, 10 Sep 2019, 4 (11), 14439–14450. 1.5 MB. https://doi.org/10.1021/acsomega.9b01366 #2d LC
Pottie, E; Cannaert, A; Stove, CP. In vitro structure–activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch. Toxicol., 5 Jul 2020, n/a. 919 kB. https://doi.org/10.1007/s00204-020-02836-w #25I-NBOMe
Kamińska, K; Świt, P; Malek, K. 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOME): A harmful hallucinogen teview. J. Anal. Toxicol., 3 Mar 2020, n/a. 820 kB. https://doi.org/10.1093/jat/bkaa022 #25I-NBOMe
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, n/a (n/a), n/a. 11.3 MB. https://doi.org/10.1002/dta.2905 #25I-NBOMe
Åstrand, A; Guerrieri, D; Vikingsson, S; Kronstrand, R; Green, H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci. Int., 1 Dec 2020, 317 110553. 1.7 MB. https://doi.org/10.1016/j.forsciint.2020.110553 #25I-NBOMe