- Mescaline
- M
- EA-1306
- 3,4,5-Trimethoxyphenethylamine
Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. https://doi.org/10.1016/j.bmc.2008.02.033 #15
Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133 #4
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. https://doi.org/10.1124/jpet.106.117507
Ogunbodede, O; McCombs, D; Trout, K; Daley, PF; Terry, M. New mescaline concentrations from 14 taxa/cultivars of Echinopsis spp. (Cactaceae) (“San Pedro”) and their relevance to shamanic practice. J. Ethnopharmacol., 15 Sep 2010, 131 (2), 356–362. 324 kB. https://doi.org/10.1016/j.jep.2010.07.021
Battersby, AR; Binks, R; Huxtable, R. Biosynthesis of cactus alkaloids. Tetrahedron Lett., 1 Jan 1967, 8 (6), 563–565. 134 kB. https://doi.org/10.1016/S0040-4039(00)90548-3 #I
Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001
Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. https://doi.org/10.1038/221537a0 #XXXIX
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #Mescaline
Nichols, DE; Shulgin, AT; Dyer, DC. Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci., 15 Aug 1977, 21 (4), 569–576. 320 kB. https://doi.org/10.1016/0024-3205(77)90099-6 #1
White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. https://doi.org/10.1016/0027-5107(77)90210-X #11
Glennon, RA; Kier, LB; Shulgin, AT. Molecular connectivity analysis of hallucinogenic mescaline analogs. J. Pharm. Sci., 1 Jan 1979, 68 (7), 906–907. 252 kB. https://doi.org/10.1002/jps.2600680733 #IV
Shulgin, AT. Profiles of psychedelic drugs. 7. Mescaline. J. Psychedelic Drugs, 1 Oct 1979, 11 (4), 355-355. 466 kB. https://doi.org/10.1080/02791072.1979.10471421
Jacob, P; Shulgin, AT. Sulfur analogues of psychotomimetic agents. 3. Ethyl homologues of mescaline and their monothioanalogues. J. Med. Chem., 1 Jan 1984, 27 (7), 881–887. 1.2 MB. https://doi.org/10.1021/jm00373a013 #1a
Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. https://doi.org/10.1111/j.2042-7158.1985.tb03072.x #1a
Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB.
Desantis, F; Nieforth, KA. Synthesis of potential mescaline antagonists. J. Pharm. Sci., 1 Jan 1976, 65 (10), 1479–1484. 704 kB. https://doi.org/10.1002/jps.2600651016 #I NMR,IR
Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. https://doi.org/10.1016/S0968-0896(03)00437-1 #42
Ho, B; Tansey, LW; Balster, RL; An, R; McIsaac, WM; Harris, RT. Amphetamine analogs. II. Methylated phenethylamines. J. Med. Chem., 1 Jan 1970, 13 (1), 134–135. 278 kB. https://doi.org/10.1021/jm00295a034 #3
Friedhoff, AJ; Goldstein, M. New developments in metabolism of mescaline and related amines. Ann. N. Y. Acad. Sci., 1 Jan 1962, 96 (1), 5–13. 506 kB. https://doi.org/10.1111/j.1749-6632.1962.tb50097.x #Mescaline
Daly, J; Axelrod, J; Witkop, B. Methylation and demethylation in relation to the in vitro metabolism of mescaline. Ann. N. Y. Acad. Sci., 1 Jan 1962, 96 (1), 37–43. 397 kB. https://doi.org/10.1111/j.1749-6632.1962.tb50099.x #I MS,NMR,IR,TLC
Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017 #32 NMR
Smythies, JR. The mescaline phenomena. Br. J. Philos. Sci., 1 Feb 1953, 3 (12), 339–347. 72 kB. https://doi.org/10.1093/bjps/III.12.339
Fenderson5555. Two syntheses of mescaline. , 21 Mar 2011. . Fenderson5555 2.2 MB.
Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 27 Aug 2002, 9, 1634–1638. 115 kB. https://doi.org/10.1039/b200607c
McGrane, O; Simmons, J; Jacobsen, E; Skinner, C. Alarming trends in a novel class of designer drugs. J. Clinic. Toxicol., 1 Nov 2011, 1 (2), 1000108. 775 kB. https://doi.org/10.4172/2161-0495.1000108
Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. https://doi.org/10.1002/omr.1270210611 #3,4,5-TMPEA NMR
Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. https://doi.org/10.1021/jm00295a007 #19
Short, JH; Dunnigan, DA; Ours, CW. Synthesis of phenethylamines from phenylacetonitriles obtained by alkylation of cyanide ion with Mannich bases from phenols and other benzylamines. Tetrahedron, 1 Jan 1973, 29 (14), 1931–1939. 791 kB. https://doi.org/10.1016/0040-4020(73)80127-9 #6, 4 in Table 2 NMR,IR
Clark, LC; Benington, F; Morin, RD. The effects of ring-methoxyl groups on biological deamination of phenethylamines. J. Med. Chem., 1 May 1965, 8 (3), 353–355. 389 kB. https://doi.org/10.1021/jm00327a016
Kier, LB; Glennon, RA. Psychotomimetic phenalkylamines as serotonin agonists: An SAR analysis. Life Sci., 8 May 1978, 22 (18), 1589–1593. 238 kB. https://doi.org/10.1016/0024-3205(78)90053-X #1
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #1 Rhodium.
Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. https://doi.org/10.1016/0014-2999(82)90454-X #8
Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027 #46
Walters, GC; Cooper, PD. Alicyclic analogue of mescaline. Nature, 20 Apr 1968, 218 (5138), 298–300. 3.1 MB. https://doi.org/10.1038/218298a0 #Ia IR
Zaehner, RC. The menace of mescalin. New Blackfriars, 1 Jul 1954, 35 (412–413), 310–323. 848 kB. https://doi.org/10.1111/j.1741-2005.1954.tb06115.x
Hermle, L; Fünfgeld, M; Oepen, G; Botsch, H; Borchardt, D; Gouzoulis, E; Fehrenbach, RA; Spitzer, M. Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: Experimental psychosis as a tool for psychiatric research. Biol. Psychiat., 1 Dec 1992, 32 (11), 976–991. 1.6 MB. https://doi.org/10.1016/0006-3223(92)90059-9
Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. https://doi.org/10.1016/S0041-008X(73)80016-X #I
Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB. #Mescaline MS,NMR,IR,UV
Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Anal., 1 Jan 2018, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292
Maruyama, Y; Matsumoto, Y; Noguchi, H; Yamazaki, M; Inde, S. Analysis of 2C-B and related compounds of 2C-B. JCCL, 1 Jan 2000, (39), 41–57. 476 kB. #Mescaline Japanese, English abstract GC,LC,MS,NMR,IR,UV
Swanson, LR. Unifying theories of psychedelic drug effects. Front. Pharmacol., 2 Mar 2018, 9 (172). 1.7 MB. https://doi.org/10.3389/fphar.2018.00172
Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99, 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #Mescaline
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #Fig. 3.1
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #33
Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9 TLC
Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Anal., 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #30
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 1 Aug 2016, 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001
López-Giménez, JF; González-Maeso, J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 45-73. 712 kB. https://doi.org/10.1007/7854_2017_478
Bogenschutz, MP; Ross, S. Therapeutic applications of classic hallucinogens. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 361-391. 360 kB. https://doi.org/10.1007/7854_2016_464
Halpern, JH; Lerner, AG; Passie, T. A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 333-360. 579 kB. https://doi.org/10.1007/7854_2016_457
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #28 LC,MS,NMR,IR
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #32
Cassels, BK; Sáez-Briones, P. DARK classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2448-2458. 648 kB. https://doi.org/10.1021/acschemneuro.8b00215
Ernst, SR; Cagle, FW. Mescaline hydrobromide. Acta Crystallogr. B, 1 Jul 1973, 29 (7), 1543–1546. 346 kB. https://doi.org/10.1107/S0567740873004917 #Mescaline other
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB.
Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 27–37. 497 kB. Rhodium.
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #3
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #29
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #10a
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #XLVIII
Martins, D. Analysis of new psychoactive substances: A contribution to forensic chemistry. M. Sc. Thesis, Universidade do Porto, 1 Jan 2014. 2.5 MB. #6 MS,NMR,other
Nichols, DE. Potential psychotomimetics: Bromomethoxyamphetamines and structural congeners of lysergic acid. Ph. D. Thesis, University of Iowa, Iowa City, IA, 1 May 1973. 13.0 MB. #1 NMR,IR,other
Anon. New ways with hallucinogens. Lancet, 8 Mar 1969, 293 (7593), 510. 181 kB. https://doi.org/10.1016/S0140-6736(69)91603-1 #mescaline
Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, . 3.9 MB. #Mescaline
Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #Mescaline
McLean, TH; Chambers, JJ; Parrish, JC; Braden, MR; Marona-Lewicka, D; Kurrasch-Orbaugh, D; Nichols, DE. C-(4,5,6-trimethoxyindan-1-yl)methanamine: A mescaline analogue designed using a homology model of the 5-HT2A receptor. J. Med. Chem., 1 Jan 2006, 49 (14), 4269–4274. 370 kB. https://doi.org/10.1021/jm060272y #1 MS,NMR
Chapman, SJ. Novel Psychoactive Spectra: NMR of (mostly) Novel Psychoactive Substances. BLOTTER, 25 Jun 2018, 3 (2). https://doi.org/10.16889/isomerdesign-6 #Mescaline NMR
Johnson, MW; Griffiths, RR; Hendricks, PS; Henningfield, JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 1 Nov 2018, 142, 143-166. 2.5 MB. https://doi.org/10.1016/j.neuropharm.2018.05.012 #Mescaline
Cooper, PD. Stereospecific synthesis of cis- and trans-2-(3,4,5-trimethoxyphenyl)-cyclopropylamines. Can. J. Chem., 1 Dec 1970, 48 (24), 3882–3888. 452 kB. https://doi.org/10.1139/v70-653 #1 IR
Cooper, PD; Walters, GC. Stereochemical requirements of the mescaline receptor. Nature, 14 Jul 1972, 238 (5359), 96–98. 2.7 MB. https://doi.org/10.1038/238096a0 #I
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #Mescaline
Chambers, SA; DeSousa, JM; Huseman, ED; Townsend, SD. The DARK side of total synthesis: Strategies and tactics in psychoactive drug production. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2307–2330. 8.1 MB. https://doi.org/10.1021/acschemneuro.7b00528 #167
Passie, T; Brandt, SD. Self-experiments with psychoactive substances: A historical perspective. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 69-110. 563 kB. https://doi.org/10.1007/164_2018_177 #Mescaline
Sintas, JA; Vitale, AA. Synthesis of derivatives of [I-131] phenylalkylamines for brain mapping. J. Labelled Compd. Radiopharm., 1 Jan 1998, 41 (1), 53–61. 367 kB. https://doi.org/10.1002/(SICI)1099-1344(199801)41:1<53::AID-JLCR53>3.0.CO;2-K #3 MS,NMR
Halberstadt, AL; Chatha, M; Chapman, SJ; Brandt, SD. Comparison of the behavioral effects of mescaline analogs using the head twitch response in mice. J. Psychopharmacol., 1 Mar 2019, 33 (3), 406-414. 901 kB. https://doi.org/10.1177/0269881119826610 #Mescaline
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S2 Phenethylamines Mescaline
Glennon, RA; Young, R; Rosecrans, JA; Kallman, MJ. Hallucinogenic agents as discriminative stimuli: A correlation with serotonin receptor affinities. Psychopharmacology, 1 May 1980, 68 (2), 155–158. 395 kB. https://doi.org/10.1007/BF00432133 #Mescaline
Glennon, RA; Liebowitz, SM; Mack, EC. Serotonin receptor binding affinities of several hallucinogenic phenylalkylamine and N,N-dimethyltryptamine analogs. J. Med. Chem., 1 Aug 1978, 21 (8), 822–825. 597 kB. https://doi.org/10.1021/jm00206a022 #12
McCorvy, JD. Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: Insights into the molecular actions of psychedelics. Ph. D. Thesis, Purdue University, 1 Jan 2012. 3.9 MB. #Mescaline
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #HP-001
Julian, EA. Microcrystalline identification of drugs of abuse: The psychedelic amphetamines. J. Forensic Sci., 1 Jul 1990, 35 (4), 821–830. 632 kB. https://doi.org/10.1520/JFS12894J #Mescaline other
Kang, S; Johnson, CL; Green, JP. Theoretical studies on the conformations of psilocin and mescaline. Mol. Pharmacol., 1 Sep 1973, 9 (5), 640–648. 6.9 MB. #Mescaline other
Monte, AP. Structure-activity relationships of hallucinogens: Design, synthesis, and pharmacological evaluation of a series of conformationally restricted phenethylamines. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Aug 1995. 10.7 MB. #Mescaline MS,NMR
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #Mescaline
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 (896). 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #Mescaline
Poulie, CBM; Jensen, AA; Halberstadt, AL; Kristensen, JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem. Neurosci., 2 Dec 2020, 11 (23), 3860-3869. 860 kB. https://doi.org/10.1021/acschemneuro.9b00528 #Mescaline
Kolaczynska, KE; Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of 4-alkoxy-substituted 2,5-dimethoxyphenethylamines and related amphetamines. Front. Pharmacol., 28 Nov 2019, 10 (1423). 1.5 MB. https://doi.org/10.3389/fphar.2019.01423 #3
Meyers-Riggs, B. Leminger’s scalines. countyourculture, countyourculture: rational exploration of the underground, 4 May 2012.
Marcher-Rørsted, E; Halberstadt, AL; Klein, AK; Chatha, M; Jademyr, S; Jensen, AA; Kristensen, JL. Investigation of the 2,5-dimethoxy motif in phenethylamine serotonin 2A receptor agonists. ACS Chem. Neurosci., 26 Mar 2020, 11 (9), 1238-1244. 3.8 MB. https://doi.org/10.1021/acschemneuro.0c00129 #7 LC,MS,NMR
Anon. An experimental evaluation of the zinc hydrochloric acid reduction of nitrostyrenes. Reddit, 1 Jan 2020, n/a. 272 kB.
Pottie, E; Cannaert, A; Stove, CP. In vitro structure–activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch. Toxicol., 1 Oct 2020, 94 (10), 3449–3460. 919 kB. https://doi.org/10.1007/s00204-020-02836-w #Mescaline
Nichols, DE. Structure-activity relationships of phenethylamine hallucinogens. J. Pharm. Sci., 1 Aug 1981, 70 (8), 839–849. 1.4 MB. https://doi.org/10.1002/jps.2600700802 #V
Fenderson5555. Mescaline, part 1 of 3. , 14 Aug 2019. . Fenderson5555 8.4 MB. #Mescaline
Fenderson5555. Mescaline, part 2 of 3. , 17 Aug 2019. . Fenderson5555 13.6 MB. #Mescaline
Fenderson5555. Mescaline, part 3 of 3. , 17 Aug 2019. . Fenderson5555 11.9 MB. #Mescaline
Folen, VA. X-Ray powder diffraction data for some drugs, excipients, and adulterants in illicit samples. J. Forensic Sci., 1 Apr 1975, 20 (2), 348–372. 502 kB. https://doi.org/10.1520/JFS10282J #48 other
Nakagawasai, O; Arai, Y; Satoh, S; Satoh, N; Neda, M; Hozumi, M; Oka, R; Hiraga, H; Tadano, T. Monoamine oxidase and head-twitch response in mice: Mechanisms of α-methylated substrate derivatives. Neurotoxicology, 1 Jan 2004, 25 (1), 223–232. 169 kB. https://doi.org/10.1016/S0161-813X(03)00101-3 #Mescaline
Nichols, DE; Walter, H. The history of psychedelics in psychiatry. Pharmacopsychiatry, 1 Jul 2021, 54 (04), 151–166. 305 kB. https://doi.org/10.1055/a-1310-3990 #Mescaline
Kozlowska, U; Nichols, C; Wiatr, K; Figiel, M. From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. J. Neurochem., 13 Sep 2021, 95 (6), 1575-1584. 35.4 MB. https://doi.org/10.1111/jnc.15509 #Mescaline
Cumming, P; Scheidegger, M; Dornbierer, D; Palner, M; Quednow, BB; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 1 Jan 2021, 26 (9), 2451. 3.5 MB. https://doi.org/10.3390/molecules26092451 #6
Mesley, RJ; Evans, WH. Infrared identification of some hallucinogenic derivatives of tryptamine and amphetamine. J. Pharm. Pharmacol., 1 May 1970, 22 (5), 321–332. 775 kB. https://doi.org/10.1111/j.2042-7158.1970.tb08533.x #Mescaline IR
Canfield, DV; Lorimer, P; Epstein, RL. Gas chromatographic analysis of amphetamine derivatives and morpholine-related drugs. J. Forensic Sci., 1 Apr 1977, 22 (2), 429–433. 303 kB. https://doi.org/10.1520/JFS10605J #Mescaline GC
Benington, F; Morin, RD. The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. Med. Chem., 1 Jul 1968, 11 (4), 896–897. 244 kB. https://doi.org/10.1021/jm00310a048 #3.8
Hodgkins, JE; Brown, SD; Massingill, JL. Two new alkaloids in cacti. Tetrahedron Lett., 1 Jan 1967, 8 (14), 1321–1324. 202 kB. https://doi.org/10.1016/S0040-4039(00)90694-4 #IV GC,MS,NMR,IR,other
Kolaczynska, KE; Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of 4-alkoxy-3,5-dimethoxy-phenethylamines (mescaline derivatives) and related amphetamines. Front. Pharmacol., 9 Feb 2022, 12 794254. 1.0 MB. https://doi.org/10.3389/fphar.2021.794254 #5
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #Mescaline
Shulgin, AT. Psychotomimetic agents related to the catecholamines. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 14–19. 782 kB. https://doi.org/10.1080/02791072.1969.10524409 #IX
Clare, BW. Structure-activity correlations for psychotomimetics. 1. Phenylalkylamines: electronic, volume, and hydrophobicity parameters. J. Med. Chem., 1 Feb 1990, 33 (2), 687–702. 2.8 MB. https://doi.org/10.1021/jm00164a036 #3
Shulgin, AT. Mescaline: the chemistry and pharmacology of its analogs. Lloydia, 1 Jan 1973, 36 (1), 46–58. 5.6 MB. #1
Vogel, WH; Evans, BD. Structure-activity-relationships of certain hallucinogenic substances based on brain levels. Life Sci., 15 May 1977, 20 (10), 1629–1635. 419 kB. https://doi.org/10.1016/0024-3205(77)90335-6 #3,4,5-Trimethoxy-PEA
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #4
Clare, BW. The frontier orbital phase angles: Novel QSAR descriptors for benzene derivatives, applied to phenylalkylamine hallucinogens. J. Med. Chem., 24 Sep 1998, 41 (20), 3845–3856. 239 kB. https://doi.org/10.1021/jm980144c #1
Nichols, DE. Hallucinogens. Pharmacol. Ther., 1 Feb 2004, 101 (2), 131–181. 855 kB. https://doi.org/10.1016/j.pharmthera.2003.11.002
El-Seedi, HR; De Smet, PAGM; Beck, O; Possnert, G; Bruhn, JG. Prehistoric peyote use: Alkaloid analysis and radiocarbon dating of archaeological specimens of Lophophora from Texas. J. Ethnopharmacol., 3 Oct 2005, 101 (1–3), 238–242. 200 kB. https://doi.org/10.1016/j.jep.2005.04.022 #Mescaline GC,MS