- DOM
- 2,5-Dimethoxy-4-methylamphetamine
- 4-Methyl-2,5-dimethoxyamphetamine
- STP
Snyder, SH; Weingartner, H; Faillace, LA. DOET (2,5-dimethoxy-4-ethylamphetamine) and DOM (STP) (2,5-dimethoxy-4-methylamphetamine), new psychotropic agents: Their effects in man. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 247–264. 3.5 MB. #DOM
Standridge, RT; Howell, HG; Gylys, JA; Partyka, RA; Shulgin, AT. Phenylalkylamines with potential psychotherapeutic utility. 1. 2-Amino-1-(2,5-dimethoxy-4-methylphenyl)butane. J. Med. Chem., 1 Jan 1976, 19 (12), 1400–1404. 730 kB. https://doi.org/10.1021/jm00234a010 #2b
Barfknecht, CF; Caputo, JF; Tobin, MB; Dyer, DC; Standridge, RT; Howell, HG; Goodwin, WR; Partyka, RA; Gylys, JA; Cavanagh, RL. Congeners of DOM: Effect of distribution on the evaluation of pharmacologic data. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 16–26. 502 kB. #2
Shulgin, AT; Dyer, DC. Psychotomimetic phenylisopropylamines. 5. 4-Alkyl-2,5-dimethoxyphenylisopropylamines. J. Med. Chem., 1 Jan 1975, 18 (12), 1201–1204. 534 kB. https://doi.org/10.1021/jm00246a006 #6b
Hollister, LE; Macnicol, MF; Gillespie, HK. An hallucinogenic amphetamine analog (DOM) in man. Psychopharmacology, 1 Jan 1969, 14 (1), 62–73. 667 kB. https://doi.org/10.1007/BF00401535
Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #DOM
Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. https://doi.org/10.1016/j.bmc.2008.02.033 #10
Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10), 1100–1111. 1.2 MB. https://doi.org/10.1021/jm00256a016 #1 other
Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133 #15
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. https://doi.org/10.1124/jpet.106.117507
Scorza, MC; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #20
Dyer, DC; Nichols, DE; Rusterholz, DB; Barfknecht, CF. Comparative effects of stereoisomers of psychotomimetic phenylisopropylamines. Life Sci., 1 Oct 1973, 13 (7), 885–896. 398 kB. https://doi.org/10.1016/0024-3205(73)90079-9
Lyon, RA; Titeler, M; Seggel, MR; Glennon, RA. Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens. Eur. J. Pharmacol., 19 Jan 1988, 145 (3), 291–297. 533 kB. https://doi.org/10.1016/0014-2999(88)90432-3
Glennon, RA; Young, R; Jacyno, JM. Indolealkylamine and phenalkylamine hallucinogens: Effect of α-methyl and N-methyl substituents on behavioral activity. Biochem. Pharmacol., 1 Apr 1983, 32 (7), 1267–1273. 591 kB. https://doi.org/10.1016/0006-2952(83)90281-2 #DOM
Fantegrossi, WE; Harrington, AW; Eckler, JR; Arshad, S; Rabin, RA; Winter, JC; Coop, A; Rice, KC; Woods, JH. Hallucinogen-like actions of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in mice and rats. Psychopharmacology, 1 Sep 2005, 181 (3), 496–503. 182 kB. https://doi.org/10.1007/s00213-005-0009-4
Winter, JC; Filipink, RA; Timineri, D; Helsley, SE; Rabin, RA. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol. Biochem. Behav., 1 Jan 2000, 65 (1), 75–82. 157 kB. https://doi.org/10.1016/S0091-3057(99)00178-1
Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. https://doi.org/10.1016/S0376-8716(99)00148-9
McGraw, NP; Callery, PS; Castagnoli, N. In vitro stereoselective metabolism of the psychotomimetic amine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. An apparent enantiomeric interaction. J. Med. Chem., 1 Jan 1977, 20 (2), 185–189. 661 kB. https://doi.org/10.1021/jm00212a001 #1
Glennon, RA; Titeler, M; Lyon, RA; Slusher, RM. N,N-Di-n-propylserotonin: Binding at serotonin binding sites and a comparison with 8-hydroxy-2-(di-n-propylamino)tetralin. J. Med. Chem., 1 Jan 1988, 31 (4), 867–870. 600 kB. https://doi.org/10.1021/jm00399a031
Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. https://doi.org/10.1038/sj.bjp.0704747
Seggel, MR; Yousif, MY; Lyon, RA; Titeler, M; Roth, BL; Suba, EA; Glennon, RA. A structure-affinity study of the binding of 4-substituted analogues of 1-(2,5-dimethoxyphenyl)-2-aminopropane at 5-HT2 serotonin receptors. J. Med. Chem., 1 Mar 1990, 33 (3), 1032–1036. 807 kB. https://doi.org/10.1021/jm00165a023 #1i
Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001
Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255
Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. https://doi.org/10.1038/221537a0 #XXXVI
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #DOM
Shulgin, AT. Stereospecific requirements for hallucinogenesis. J. Pharm. Pharmacol., 1 Jan 1973, 25 (3), 271–272. 226 kB. https://doi.org/10.1111/j.2042-7158.1973.tb10642.x #II
Shulgin, AT. Profiles of psychedelic drugs. 5. STP. J. Psychedelic Drugs, 1 Apr 1977, 9 (2), 171–172. 713 kB. https://doi.org/10.1080/02791072.1977.10472044
Nichols, DE; Shulgin, AT; Dyer, DC. Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci., 15 Aug 1977, 21 (4), 569–576. 320 kB. https://doi.org/10.1016/0024-3205(77)90099-6 #10
White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. https://doi.org/10.1016/0027-5107(77)90210-X #7
Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.
Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. https://doi.org/10.1021/jm00144a009 other
Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. https://doi.org/10.1111/j.2042-7158.1985.tb03072.x #3c
McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M
Nichols, DE; Barfknecht, CF; Rusterholz, DB; Benington, F; Morin, RD. Asymmetric synthesis of psychotomimetic phenylisopropylamines. J. Med. Chem., 1 May 1973, 16 (5), 480–483. 515 kB. https://doi.org/10.1021/jm00263a013 #5k,l
Nichols, DE; Pfister, WR; Yim, GKW. LSD and phenethylamine hallucinogens: New structural analogy and implications for receptor geometry. Life Sci., 26 Jun 1978, 22 (24), 2165–2170. 323 kB. https://doi.org/10.1016/0024-3205(78)90567-2 #DOM
Weintraub, HJR; Nichols, DE; Makriyannis, A; Fesik, SW. Conformational energy differences between side chain alkylated analogues of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. J. Med. Chem., 1 Mar 1980, 23 (3), 339–341. 452 kB. https://doi.org/10.1021/jm00177a030 #3
Kothari, PJ; Hathaway, BA; Nichols, DE; Yim, GKW. Synthesis and serotonin-like activity of 2-amino-5,8-dimethoxy-6-methyl-1,2-dihydronaphthalene. J. Med. Chem., 1 Jul 1981, 24 (7), 882–884. 464 kB. https://doi.org/10.1021/jm00139a022 #2 NMR
Jacob, JN; Nichols, DE. Isomeric cyclopropyl ring-methylated homologues of trans-2-(2,5-dimethoxy-4-methylphenyl)cyclopropylamine, an hallucinogen analogue. J. Med. Chem., 1 Jul 1982, 25 (5), 526–530. 732 kB. https://doi.org/10.1021/jm00347a009 #1 NMR
Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 305–313. 10.7 MB. https://doi.org/10.1080/02791072.1986.10472362 #DOM
Nichols, DE; Snyder, SE; Oberlender, R; Johnson, MP; Huang, X. 2,3-Dihydrobenzofuran analogues of hallucinogenic phenethylamines. J. Med. Chem., 1 Jan 1991, 34 (1), 276–281. 833 kB. https://doi.org/10.1021/jm00105a043 #4 MS,NMR
Oberlender, R; Ramachandran, PV; Johnson, MP; Huang, X; Nichols, DE. Effect of a chiral 4-alkyl substituent in hallucinogenic amphetamines. J. Med. Chem., 1 Sep 1995, 38 (18), 3593–3601. 1.3 MB. https://doi.org/10.1021/jm00018a019 #2 MS,NMR,other
Chambers, JJ; Kurrasch-Orbaugh, DM; Nichols, DE. Translocation of the 5-alkoxy substituent of 2,5-dialkoxyarylalkylamines to the 6-position: Effects on 5-HT2A/2C receptor affinity. Bioorg. Med. Chem. Lett., 1 Aug 2002, 12 (15), 1997–1999. 100 kB. https://doi.org/10.1016/S0960-894X(02)00306-2 #1
Ewald, AH. The 2,5-Dimethoxyamphetamines—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 1 Jan 2008. 195 kB.
Rasmussen, K; Glennon, RA; Aghajanian, GK. Phenethylamine hallucinogens in the locus coeruleus: potency of action correlates with rank order of 5-HT2 binding affinity. Eur. J. Pharmacol., 2 Dec 1986, 132 (1), 79–82. 267 kB. https://doi.org/10.1016/0014-2999(86)90014-2 #DOM
Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.
Coutts, RT; Malicky, JL. The synthesis of four possible in vitro metabolites of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM). Can. J. Chem., 1 Feb 1974, 52 (3), 395–399. 299 kB. https://doi.org/10.1139/v74-063 MS,NMR,IR
Zweig, JS; Castagnoli, N. Chemical conversion of the psychotomimetic amine 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane to 5-hydroxy-2,6-dimethylindole. J. Med. Chem., 1 Jul 1974, 17 (7), 747–749. 438 kB. https://doi.org/10.1021/jm00253a019 #4 NMR,IR,UV
Zweig, JS; Castagnoli, N. In vitro O-demethylation of the psychotomimetic amine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. J. Med. Chem., 1 Mar 1977, 20 (3), 414–421. 1.2 MB. https://doi.org/10.1021/jm00213a020 #1 NMR
Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #1 NMR
Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. https://doi.org/10.1016/S0968-0896(03)00437-1 #3
Ho, B; Tansey, LW; Balster, RL; An, R; McIsaac, WM; Harris, RT. Amphetamine analogs. II. Methylated phenethylamines. J. Med. Chem., 1 Jan 1970, 13 (1), 134–135. 278 kB. https://doi.org/10.1021/jm00295a034 #1
Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B #S3
Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017 #38 NMR
Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. https://doi.org/10.1021/jm00295a007 #2
Ho, B; Estevez, V; Tansey, LW; Englert, LF; Creaven, PJ; McIsaac, WM. Analogs of amphetamine. 5. Excretory metabolites of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) in rats. J. Med. Chem., 1 Feb 1971, 14 (2), 158–160. 371 kB. https://doi.org/10.1021/jm00284a019 #1 TLC,spot
Ho, B; Tansey, LW. Analogs of amphetamine. 4. Synthesis of metabolites of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM). J. Med. Chem., 1 Feb 1971, 14 (2), 156–157. 316 kB. https://doi.org/10.1021/jm00284a018 #1
Kier, LB; Glennon, RA. Psychotomimetic phenalkylamines as serotonin agonists: An SAR analysis. Life Sci., 8 May 1978, 22 (18), 1589–1593. 238 kB. https://doi.org/10.1016/0024-3205(78)90053-X #10
Glennon, RA; Young, R; Rosecrans, JA. A comparison of the behavioral effects of DOM homologs. Pharmacol. Biochem. Behav., 1 Apr 1982, 16 (4), 557–559. 256 kB. https://doi.org/10.1016/0091-3057(82)90414-2 #DOM
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #69 Rhodium.
Worsham, JN. 5-HT3 receptor ligands and their effect on psychomotor stimulants. M. Sc. Thesis, Virginia Commonwealth University, Richmond, VA, USA, 1 May 2008. 956 kB.
Reissig, CJ. The 5-HT1A receptor and hallucinogens. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 7 Sep 2006. 943 kB.
Regina, MJ. Biochemical changes associated with serotonergic hallucinogens. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 1 Jun 2005. 3.4 MB.
Glennon, RA; Seggel, MR. Interaction of phenylisopropylamines with central 5-HT2 receptors. Analysis by quantitative structure-activity relationships. In Probing Bioactive Mechanisms; ACS Symposium Series; Magee, PS; Henry, DR; Block, JH, Eds., American Chemical Society, Washington, DC, 14 Nov 1989; Vol. 413, pp 264–280. 4.4 MB. https://doi.org/10.1021/bk-1989-0413.ch018 #9
Eckler, JR. Stimulus control by hallucinogens: SSRI interactions. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 20 Dec 2002. 2.9 MB.
Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027 #7
Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0 #DOM
Snyder, SH; Faillace, L; Hollister, L. 2,5-Dimethoxy-4-methyl-amphetamine (STP): A new hallucinogenic drug. Science, 3 Nov 1967, 158 (3801), 669–670. 520 kB. https://doi.org/10.1126/science.158.3801.669
By, A; Neville, GA; Shurvell, HF. Fourier transform infrared/raman differentiation and characterization of cis- and trans-2,5-dimethoxy-4,β-dimethyl-β′-nitrostyrenes: precursors to the street drug STP. J. Forensic Sci., 1 Mar 1992, 37 (2), 503–512. 387 kB. https://doi.org/10.1520/JFS13258J IR,other
Shannon, M; Battaglia, G; Glennon, RA; Titeler, M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur. J. Pharmacol., 15 Jun 1984, 102 (1), 23–29. 461 kB. https://doi.org/10.1016/0014-2999(84)90333-9 #DOM
Glennon, RA; Titeler, M; McKenney, JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 17 Dec 1984, 35 (25), 2505–2511. 332 kB. https://doi.org/10.1016/0024-3205(84)90436-3 #7,10
Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Neuropharmacology of New Psychoactive Substances (NPS): The Science Behind the Headlines; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 18 Jan 2017; pp 283-311. 826 kB. https://doi.org/10.1007/7854_2016_64
Jackson, B; Reed, A. Another abusable amphetamine. JAMA, 2 Feb 1970, 211 (5), 830–830. 186 kB. https://doi.org/10.1001/jama.1970.03170050064024 #STP
Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB. #STP MS,NMR,IR,UV
Meyers, FH; Rose, AJ; Smith, DE. Incidents involving the Haight-Ashbury population and some uncommonly used drugs. J. Psychedelic Drugs, 1 Apr 1968, 1 (2), 139–146. 842 kB. https://doi.org/10.1080/02791072.1968.10524531
Smith, DE. The psychotomimetic amphetamines with special reference to DOM (STP) toxicity. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 37–41. 709 kB. https://doi.org/10.1080/02791072.1969.10524413 #STP
Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 1 Jan 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9
Eshleman, AJ; Wolfrum, KM; Reed, JF; Kim, SO; Johnson, RA; Janowsky, A. Neurochemical pharmacology of psychoactive substituted N-benzylphenethylamines: High potency agonists at 5-HT2A receptors. Biochem. Pharmacol., 1 Dec 2018, 158 27–34. 790 kB. https://doi.org/10.1016/j.bcp.2018.09.024 #DOM
Martins, D; Barratt, MJ; Pires, CV; Carvalho, H; Ventura, M; Fornís, I; Valente, H. The detection and prevention of unintentional consumption of DOx and 25x-NBOMe at Portugal’s Boom Festival. Hum. Psychopharmacol. Clin. Exp., 1 May 2017, 32 (3), e2608. 400 kB. https://doi.org/10.1002/hup.2608
Maruyama, Y; Matsumoto, Y; Noguchi, H; Yamazaki, M; Inde, S. Analysis of 2C-B and related compounds of 2C-B. JCCL, 1 Jan 2000, (39), 41–57. 476 kB. #DOM Japanese, English abstract GC,LC,MS,NMR,IR,UV
Titeler, M; Lyon, RA; Glennon, RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology, 1 Feb 1988, 94 (2), 213–216. 431 kB. https://doi.org/10.1007/BF00176847 #6,8
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #3.28
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #1
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #37
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
López-Giménez, JF; González-Maeso, J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 45-73. 712 kB. https://doi.org/10.1007/7854_2017_478
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #39
Cassels, BK; Sáez-Briones, P. DARK classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2448-2458. 648 kB. https://doi.org/10.1021/acschemneuro.8b00215
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB.
Nichols, DE; Weintraub, HJR; Pfister, WR; Yim, GKW. The use of rigid analogues to probe hallucinogen receptors. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 70–83. 717 kB. #5
Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 27–37. 497 kB. Rhodium.
Anderson, GM; Castagnoli, N; Kollman, PA. Quantitative structure-activity relationships in the 2,4,5-ring-substituted phenylisopropylamines. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 199–217. 623 kB. #5
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #22aa,27
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #40
Glennon, RA; Jacyno, JM; Young, R; McKenney, JD; Nelson, D. Synthesis and evaluation of a novel series of N,N-dimethylisotryptamines. J. Med. Chem., 1 Jan 1984, 27 (1), 41–45. 718 kB. https://doi.org/10.1021/jm00367a008 NMR
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #10hh
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #LXXXII
Adamowicz, P; Zuba, D. Discrimination among designer drug isomers by chromatographic and spectrometric methods. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 211–232. 1.1 MB.
Nichols, DE. Potential psychotomimetics: Bromomethoxyamphetamines and structural congeners of lysergic acid. Ph. D. Thesis, University of Iowa, Iowa City, IA, 1 May 1973. 13.0 MB. #4 NMR,IR,other
Maurer, HH. Chemistry, pharmacology, and metabolism of emerging drugs of abuse. Ther. Drug Monit., 1 Oct 2010, 32 (5), 544–549. 142 kB. https://doi.org/10.1097/FTD.0b013e3181eea318 #DOM
Broadley, KJ. The vascular effects of trace amines and amphetamines. Pharmacol. Ther., 1 Mar 2010, 125 (3), 363–375. 1.1 MB. https://doi.org/10.1016/j.pharmthera.2009.11.005 #DOM
Monte, AP; Marona-Lewicka, D; Parker, MA; Wainscott, DB; Nelson, DL; Nichols, DE. Dihydrobenzofuran analogues of hallucinogens. 3. 1 Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups. J. Med. Chem., 1 Jan 1996, 39 (15), 2953–2961. 290 kB. https://doi.org/10.1021/jm960199j #1a
Nichols, DF; Oberlender, R. Structure-activity relationships of MDMA and related compounds: A new class of psychoactive agents? In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 105–131. 733 kB. https://doi.org/10.1007/978-1-4613-1485-1_7 #2
Glennon, RA; Young, R; Benington, F; Morin, RD. Behavioral and serotonin receptor properties of 4-substituted derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem., 1 Oct 1982, 25 (10), 1163–1168. 780 kB. https://doi.org/10.1021/jm00352a013 #4 NMR,other
Rangisetty, JB; Dukat, M; Dowd, CS; Herrick-Davis, K; DuPre, A; Gadepalli, S; Teitler, M; Kelley, CR; Sharif, NA; Glennon, RA. 1-[2-Methoxy-5-(3-phenylpropyl)]-2-aminopropane unexpectedly shows 5-HT2A serotonin receptor affinity and antagonist character. J. Med. Chem., 1 Jan 2001, 44 (20), 3283–3291. 115 kB. https://doi.org/10.1021/jm0100739 #1c NMR
Glennon, RA; McKenney, JD; Lyon, RA; Titeler, M. 5-HT1 and 5-HT2 binding characteristics of 1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane analogs. J. Med. Chem., 1 Feb 1986, 29 (2), 194–199. 919 kB. https://doi.org/10.1021/jm00152a005 #1b NMR,IR
Glennon, RA; Young, R. MDA: A psychoactive agent with dual stimulus effects. Life Sci., 23 Jan 1984, 34 (4), 379–383. 283 kB. https://doi.org/10.1016/0024-3205(84)90627-1 #DOM
Pigott, A; Frescas, SP; McCorvy, JD; Huang, X; Roth, BL; Nichols, DE. trans-2-(2,5-Dimethoxy-4-iodophenyl)cyclopropylamine and trans-2-(2,5-dimethoxy-4-bromophenyl)cyclopropylamine as potent agonists for the 5-HT2 receptor family. Beilstein J. Org. Chem., 8 Oct 2012, 8, 1705–1709. 298 kB. https://doi.org/10.3762/bjoc.8.194 #2 NMR,other
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #DOM
Shulgin, AT; Nichols, DE. Characterization of three new psychotomimetics. In The Psychopharmacology of Hallucinogens; Stillman, RC; Willette, RE, Eds., Pergamon, 1 Jan 1978; pp 74–83. 210 kB. https://doi.org/10.1016/B978-0-08-021938-7.50010-2 #1c A different layout of the same paper
Glennon, RA; Young, R; Rosecrans, JA; Kallman, MJ. Hallucinogenic agents as discriminative stimuli: A correlation with serotonin receptor affinities. Psychopharmacology, 1 May 1980, 68 (2), 155–158. 395 kB. https://doi.org/10.1007/BF00432133 #DOM
Glennon, RA; Liebowitz, SM; Mack, EC. Serotonin receptor binding affinities of several hallucinogenic phenylalkylamine and N,N-dimethyltryptamine analogs. J. Med. Chem., 1 Aug 1978, 21 (8), 822–825. 597 kB. https://doi.org/10.1021/jm00206a022 #3
Glennon, RA; Rosecrans, JA; Young, R; Gaines, J. Hallucinogens as a discriminative stimuli: Generalization of DOM to a 5-methoxy-N,N-dimethyltryptamine stimulus. Life Sci., 12 Mar 1979, 24 (11), 993–997. 261 kB. https://doi.org/10.1016/0024-3205(79)90317-5 #DOM
Tilson, HA; Chamberlain, JH; Gylys, JA. Behavioral comparisons of R-2-amino-1-(2,5-dimethoxy-4-methylphenyl) butane (BL-3912A) with R-DOM and S-amphetamine. Psychopharmacology, 1 Jan 1977, 51 (2), 169–173. 507 kB. https://doi.org/10.1007/BF00431735 #DOM
Glennon, R; Bondareva, T; Young, R. α-Ethyltryptamine (α-ET) as a discriminative stimulus in rats. Pharmacol. Biochem. Behav., 1 Oct 2006, 85 (2), 448–453. 245 kB. https://doi.org/10.1016/j.pbb.2006.09.014 #DOM
McCorvy, JD. Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: Insights into the molecular actions of psychedelics. Ph. D. Thesis, Purdue University, 1 Jan 2012. 3.9 MB. #DOM
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #HP-014
Weintraub, HJR; Nichols, DE. Conformational energy calculations of some amphetamine analogs using a new solvation model. Int. J. Quantum Chem., 18 Jun 2009, 14 (S5), 321–343. 1.2 MB. https://doi.org/10.1002/qua.560140731 #I other
Julian, EA. Microcrystalline identification of drugs of abuse: The psychedelic amphetamines. J. Forensic Sci., 1 Jul 1990, 35 (4), 821–830. 632 kB. https://doi.org/10.1520/JFS12894J #DOM other
Oberlender, RA. Stereoselective aspects of hallucinogenic drug action and drug discrimination studies of entactogens. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 May 1989. 8.2 MB. #DOM MS,NMR,IR,other
Monte, AP. Structure-activity relationships of hallucinogens: Design, synthesis, and pharmacological evaluation of a series of conformationally restricted phenethylamines. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Aug 1995. 10.7 MB. #DOM MS,NMR
Glennon, RA; Bondarev, ML; Khorana, N; Young, R. β-Oxygenated analogues of the 5-HT2A serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem., 1 Jan 2004, 47 (24), 6034–6041. 146 kB. https://doi.org/10.1021/jm040082s #1c NMR
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #DOM
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 (896). 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #DOM
Sadzot, B; Baraban, JM; Glennon, RA; Lyon, RA; Leonhardt, S; Jan, C; Titeler, M. Hallucinogenic drug interactions at human brain 5-HT2 receptors: implications for treating LSD-induced hallucinogenesis. Psychopharmacology, 1 Aug 1989, 98 (4), 495–499. 895 kB. https://doi.org/10.1007/BF00441948 #DOM
Sáez-Briones, P; Hernández, A. MDMA (3,4-Methylenedioxymethamphetamine) Analogues as Tools to Characterize MDMA-Like Effects: An Approach to Understand Entactogen Pharmacology. Curr. Neuropharmacol., 1 Sep 2013, 11 (5), 521–534. 1.4 MB. https://doi.org/10.2174/1570159X11311050007 #DOM
Kolaczynska, KE; Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of 4-alkoxy-substituted 2,5-dimethoxyphenethylamines and related amphetamines. Front. Pharmacol., 28 Nov 2019, 10 (1423). 1.5 MB. https://doi.org/10.3389/fphar.2019.01423 #23
Marcher-Rørsted, E; Halberstadt, AL; Klein, AK; Chatha, M; Jademyr, S; Jensen, AA; Kristensen, JL. Investigation of the 2,5-dimethoxy motif in phenethylamine serotonin 2A receptor agonists. ACS Chem. Neurosci., 26 Mar 2020, 11 (9), 1238-1244. 3.8 MB. https://doi.org/10.1021/acschemneuro.0c00129 #9 LC,MS,NMR
Palamar, JJ; Acosta, P. A qualitative descriptive analysis of effects of psychedelic phenethylamines and tryptamines. Hum. Psychopharmacol. Clin. Exp., 1 Jan 2020, 35 (1), e2719. 764 kB. https://doi.org/10.1002/hup.2719 #DOM
Pottie, E; Cannaert, A; Stove, CP. In vitro structure–activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch. Toxicol., 1 Oct 2020, 94 (10), 3449–3460. 919 kB. https://doi.org/10.1007/s00204-020-02836-w #DOM
Flanagan, TW; Billac, GB; Landry, AN; Sebastian, MN; Cormier, SA; Nichols, CD. Structure–activity relationship analysis of psychedelics in a rat model of asthma reveals the anti-inflammatory pharmacophore. ACS Pharmacol. Transl. Sci., 9 Apr 2021, 4 (2), 488-502. 13.3 MB. https://doi.org/10.1021/acsptsci.0c00063 #R-DOM
Nichols, DE. Structure-activity relationships of phenethylamine hallucinogens. J. Pharm. Sci., 1 Aug 1981, 70 (8), 839–849. 1.4 MB. https://doi.org/10.1002/jps.2600700802 #II
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #2,5-dimethoxy-4-methylamphetamin
Åstrand, A; Guerrieri, D; Vikingsson, S; Kronstrand, R; Green, H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci. Int., 1 Dec 2020, 317, 110553. 1.7 MB. https://doi.org/10.1016/j.forsciint.2020.110553 #DOM
Phillips, GF; Mesley, RJ. Examination of the hallucinogen 2,5-dimethoxy-4-methylamphetamine. J. Pharm. Pharmacol., 1 Jan 1969, 21 (1), 9–17. 550 kB. https://doi.org/10.1111/j.2042-7158.1969.tb08122.x #DOM MS,NMR,IR,UV,TLC,spot,other
Cumming, P; Scheidegger, M; Dornbierer, D; Palner, M; Quednow, BB; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 1 Jan 2021, 26 (9), 2451. 3.5 MB. https://doi.org/10.3390/molecules26092451 #11
Uchiyama, N; Kawamura, M; Kamakura, H; Kikura-Hanajiri, R; Goda, Y. Analytical data of designated substances (shitei-yakubutsu) controlled by the pharmaceutical affairs law in Japan, Part II: Color test and TLC. Yakugaku Zasshi, 1 Jan 2008, 128 (6), 981–987. 406 kB. https://doi.org/10.1248/yakushi.128.981 #DOM TLC
Mesley, RJ; Evans, WH. Infrared identification of some hallucinogenic derivatives of tryptamine and amphetamine. J. Pharm. Pharmacol., 1 May 1970, 22 (5), 321–332. 775 kB. https://doi.org/10.1111/j.2042-7158.1970.tb08533.x #DOM IR
Canfield, DV; Lorimer, P; Epstein, RL. Gas chromatographic analysis of amphetamine derivatives and morpholine-related drugs. J. Forensic Sci., 1 Apr 1977, 22 (2), 429–433. 303 kB. https://doi.org/10.1520/JFS10605J #4-methyl-2,5-dimethoxyamphetamin GC
Philp, M; Shimmon, R; Stojanovska, N; Tahtouh, M; Fu, S. Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials. Anal. Methods, 1 Jan 2013, 5 (20), 5402. 783 kB. https://doi.org/10.1039/c3ay40511g #2,5-Dimethoxy-4-methylamphetamin MS,NMR,IR,spot
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #DOM
Shulgin, AT. Psychotomimetic agents related to the catecholamines. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 14–19. 782 kB. https://doi.org/10.1080/02791072.1969.10524409 #XIV
Clare, BW. Structure-activity correlations for psychotomimetics. 1. Phenylalkylamines: electronic, volume, and hydrophobicity parameters. J. Med. Chem., 1 Feb 1990, 33 (2), 687–702. 2.8 MB. https://doi.org/10.1021/jm00164a036 #56
Shulgin, AT. Mescaline: the chemistry and pharmacology of its analogs. Lloydia, 1 Jan 1973, 36 (1), 46–58. 5.6 MB. #35
Glennon, RA; Rosecrans, JA. Indolealkylamine and phenalkylamine hallucinogens: A brief overview. Neurosci. Biobehav. Rev., 1 Jan 1982, 6 (4), 489–497. 895 kB. https://doi.org/10.1016/0149-7634(82)90030-6 #8h,i,j
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #24
Clare, BW. The frontier orbital phase angles: Novel QSAR descriptors for benzene derivatives, applied to phenylalkylamine hallucinogens. J. Med. Chem., 24 Sep 1998, 41 (20), 3845–3856. 239 kB. https://doi.org/10.1021/jm980144c #35