- DOI
- 4-Iodo-2,5-dimethoxyamphetamine
- 2,5-Dimethoxy-4-iodoamphetamine
Braun, U; Shulgin, AT; Braun, G; Sargent, T. Synthesis and body distribution of several iodine-131-labeled central nervous system active drugs. J. Med. Chem., 1 Jan 1977, 20 (12), 1543–1546. 1.1 MB. https://doi.org/10.1021/jm00222a001 #3b NMR
Coutts, RT; Malicky, JL. The synthesis of some analogs of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM). Can. J. Chem., 1 Jan 1973, 51 (9), 1402–1409. 746 kB. https://doi.org/10.1139/v73-210 #1g IR
Sargent, T; Budinger, TF; Braun, G; Shulgin, AT; Braun, U. An iodinated catecholamine congener for brain imaging and metabolic studies. J. Nucl. Med., 1 Jan 1978, 19 (1), 71–76. 922 kB.
Braun, G; Shulgin, AT; Sargent, T. Synthesis of 123I-labelled 4-iodo-2,5-dimethoxyphenylisopropylamine. J. Labelled Compd. Radiopharm., 1 Jan 1978, 14 (5), 767–773. 291 kB. https://doi.org/10.1002/jlcr.2580140515 #4 Rhodium.
Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #DOI
Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. https://doi.org/10.1016/j.bmc.2008.02.033 #5
Nelson, DL; Lucaites, VL; Wainscott, DB; Glennon, RA. Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, 5-HT2B and 5-HT2C receptors. N-S. Arch. Pharmacol., 1 Jan 1999, 359 (1), 1–6. 66 kB. https://doi.org/10.1007/PL00005315 #DOI
Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133 #17
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Sargent, T; Shulgin, AT; Mathis, CA. New iodinated amphetamines by rapid synthesis for use as brain blood flow indicators. J. Labelled Compd. Radiopharm., 1 Jan 1984, 19 (11–12), 1307–1308. 84 kB. https://doi.org/10.1002/jlcr.2580191102 #III
Sargent, T; Shulgin, AT; Mathis, CA. Radiohalogen-labeled imaging agents. 3. Compounds for measurement of brain blood flow by emission tomography. J. Med. Chem., 1 Jan 1984, 27 (8), 1071–1077. 1.9 MB. https://doi.org/10.1021/jm00374a023 #1r Rhodium. NMR,TLC
Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413
Schindler, EAD; Dave, KD; Smolock, EM; Aloyo, VJ; Harvey, JA. Serotonergic and dopaminergic distinctions in the behavioral pharmacology of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Pharmacol. Biochem. Behav., 1 Mar 2012, 101 (1), 69–76. 722 kB. https://doi.org/10.1016/j.pbb.2011.12.002
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. https://doi.org/10.1124/jpet.106.117507
Scorza, MC; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #22
Fox, MA; French, HT; LaPorte, JL; Blackler, AR; Murphy, DL. The serotonin 5-HT2A receptor agonist TCB-2: A behavioral and neurophysiological analysis. Psychopharmacology, 1 Sep 2010, 212 (1), 13–23. 240 kB. https://doi.org/10.1007/s00213-009-1694-1
Marona-Lewicka, D; Kurrasch-Orbaugh, DM; Selken, JR; Cumbay, MG; Lisnicchia, JG; Nichols, DE. Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine 1A receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology, 1 Oct 2002, 164 (1), 93–107. 293 kB. https://doi.org/10.1007/s00213-002-1141-z
Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. https://doi.org/10.1016/S0376-8716(99)00148-9
Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. https://doi.org/10.1038/sj.bjp.0704747
Seggel, MR; Yousif, MY; Lyon, RA; Titeler, M; Roth, BL; Suba, EA; Glennon, RA. A structure-affinity study of the binding of 4-substituted analogues of 1-(2,5-dimethoxyphenyl)-2-aminopropane at 5-HT2 serotonin receptors. J. Med. Chem., 1 Mar 1990, 33 (3), 1032–1036. 807 kB. https://doi.org/10.1021/jm00165a023 #1h
Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255
Braden, MR; Parrish, JC; Naylor, JC; Nichols, DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol. Pharmacol., 1 Jan 2006, 70 (6), 1956–1964. 361 kB. https://doi.org/10.1124/mol.106.028720 #DOI
McKenna, DJ; Mathis, CA; Shulgin, AT; Sargent, T; Saavedra, JM. Autoradiographic localization of binding sites for 125I-DOI, a new psychotomimetic radioligand, in the rat brain. Eur. J. Pharmacol., 1 Jan 1987, 137 (2–3), 289–290. 232 kB. https://doi.org/10.1016/0014-2999(87)90239-1
Huang, X; Nichols, DE. 5-HT2 receptor-mediated potentiation of dopamine synthesis and central serotonergic deficits. Eur. J. Pharmacol., 20 Jul 1993, 238 (2–3), 291–296. 553 kB. https://doi.org/10.1016/0014-2999(93)90859-G
Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. https://doi.org/10.1007/s10822-010-9400-2 #12
Moreno, JL; Holloway, T; Albizu, L; Sealfon, SC; González-Maeso, J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci. Lett., 15 Apr 2011, 493 (3), 76–79. 196 kB. https://doi.org/10.1016/j.neulet.2011.01.046
Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.
Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB. #DOI LC,MS,NMR
Ewald, AH. The 2,5-Dimethoxyamphetamines—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 1 Jan 2008. 195 kB.
Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB. #36
Sargent, T; Braun, G; Braun, U; Budinger, TF; Shulgin, AT. Brain and retina uptake of a radio-iodine labeled psychotomimetic in dog and monkey. Commun. Psychopharmacol., 1 Jan 1978, 2 (1), 1–10. 2.0 MB.
Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #3 NMR
Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B #S7, S8
Parrish, JC; Braden, MR; Gundy, E; Nichols, DE. Differential phospholipase C activation by phenylalkylamine serotonin 5-HT2A receptor agonists. J. Neurochem., 1 Dec 2005, 95 (6), 1575–1584. 301 kB. https://doi.org/10.1111/j.1471-4159.2005.03477.x
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Fenderson5555. DOC, DOB, DOI and DOET: Strategic considerations. , 7 Sep 2013. . Fenderson5555 9.5 MB. #DOI
Sy, W. Iodination of methoxyamphetamines with iodine and silver sulphate. Tetrahedron Lett., 24 Sep 1993, 34 (39), 6223–6224. 133 kB. https://doi.org/10.1016/S0040-4039(00)73715-4
Kanai, K; Takekawa, K; Kumamoto, T; Ishikawa, T; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol., 1 Nov 2008, 26 (2), 6–12. 406 kB. https://doi.org/10.1007/s11419-008-0041-2 GC,LC,MS,NMR,IR,TLC
Dawson, BA; Black, DB; Sy, W; Graham, K. 13C NMR of some iodinated methoxy-amphetamines. Magn. Reson. Chem., 1 Sep 1994, 32 (9), 557–558. 171 kB. https://doi.org/10.1002/mrc.1260320913 #6 NMR
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #86 Rhodium.
Schindler, EAD. Behavioral and biochemical distinctions in the pharmacology of two common hallucinogens. Ph. D. Thesis, Drexel University, Philadelphia, PA, USA, 1 Apr 2010. 5.9 MB.
Ang, RLL. Molecular basis of the action of hallucinogens. Ph. D. Thesis, New York University, New York, NY, USA, . 2.4 MB. #DOI
Pigott, A; Frescas, SP; McCorvy, JD; Huang, X; Roth, BL; Nichols, DE. trans-2-(2,5-Dimethoxy-4-iodophenyl)cyclopropylamine and trans-2-(2,5-dimethoxy-4-bromophenyl)cyclopropylamine as potent agonists for the 5-HT2 receptor family. Beilstein J. Org. Chem., 8 Oct 2012, 8, 1705–1709. 298 kB. https://doi.org/10.3762/bjoc.8.194 #1a NMR,other
Glennon, RA; Seggel, MR. Interaction of phenylisopropylamines with central 5-HT2 receptors. Analysis by quantitative structure-activity relationships. In Probing Bioactive Mechanisms; ACS Symposium Series; Magee, PS; Henry, DR; Block, JH, Eds., American Chemical Society, Washington, DC, 14 Nov 1989; Vol. 413, pp 264–280. 4.4 MB. https://doi.org/10.1021/bk-1989-0413.ch018 #8
Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027 #1
Perez-Aguilar, JM; Shan, J; LeVine, MV; Khelashvili, G; Weinstein, H. A Functional Selectivity Mechanism at the Serotonin-2A GPCR Involves Ligand-Dependent Conformations of Intracellular Loop 2. J. Am. Chem. Soc., 12 Nov 2014, 136 (45), 16044–16054. 4.2 MB. https://doi.org/10.1021/ja508394x
Shannon, M; Battaglia, G; Glennon, RA; Titeler, M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur. J. Pharmacol., 15 Jun 1984, 102 (1), 23–29. 461 kB. https://doi.org/10.1016/0014-2999(84)90333-9 #DOI
Glennon, RA; McKenney, JD; Lyon, RA; Titeler, M. 5-HT1 and 5-HT2 binding characteristics of 1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane analogs. J. Med. Chem., 1 Feb 1986, 29 (2), 194–199. 919 kB. https://doi.org/10.1021/jm00152a005 #1c NMR,IR
Glennon, RA; Titeler, M; McKenney, JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 17 Dec 1984, 35 (25), 2505–2511. 332 kB. https://doi.org/10.1016/0024-3205(84)90436-3 #2,3
Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Neuropharmacology of New Psychoactive Substances (NPS): The Science Behind the Headlines; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 18 Jan 2017; pp 283-311. 826 kB. https://doi.org/10.1007/7854_2016_64
Martins, D; Barratt, MJ; Pires, CV; Carvalho, H; Ventura, M; Fornís, I; Valente, H. The detection and prevention of unintentional consumption of DOx and 25x-NBOMe at Portugal’s Boom Festival. Hum. Psychopharmacol. Clin. Exp., 1 May 2017, 32 (3), e2608. 400 kB. https://doi.org/10.1002/hup.2608
Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, 11 Feb 2011, 50, 63-82. 627 kB. Japanese, English abstract LC,MS,NMR,IR
Jensen, AA; McCorvy, JD; Leth-Petersen, S; Bundgaard, C; Liebscher, G; Kenakin, TP; Bräuner-Osborne, H; Kehler, J; Kristensen, JL. Detailed characterization of the in vitro pharmacological and pharmacokinetic properties of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine (25CN-NBOH), a highly selective and brain-penetrant 5-HT2A receptor agonist. J. Pharmacol. Exp. Ther., 1 Jun 2017, 361 (3), 441–453. 4.1 MB. https://doi.org/10.1124/jpet.117.239905 #DOI
Titeler, M; Lyon, RA; Glennon, RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology, 1 Feb 1988, 94 (2), 213–216. 431 kB. https://doi.org/10.1007/BF00176847 #3
Canal, CE; Morgan, D; Felsing, D; Kondabolu, K; Rowland, NE; Robertson, KL; Sakhuja, R; Booth, RG. A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses. J. Pharmacol. Exp. Ther., 1 May 2014, 349 (2), 310–318. 981 kB. https://doi.org/10.1124/jpet.113.212373 #DOI
Monte, AP; Marona-Lewicka, D; Cozzi, NV; Nelson, DL; Nichols, DE. Conformationally restricted tetrahydro-1-benzoxepin analogs of hallucinogenic phenethylamines. Med. Chem. Res., 1 Sep 1995, 5 (9), 651–663. 2.0 MB. #1c NMR,IR
Marek, GJ. Interactions of hallucinogens with the glutamatergic system: Permissive network effects mediated through cortical layer V pyramidal neurons. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 107-135. 1.2 MB. https://doi.org/10.1007/7854_2017_480
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #39
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
López-Giménez, JF; González-Maeso, J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 45-73. 712 kB. https://doi.org/10.1007/7854_2017_478
Lladó-Pelfort, L; Celada, P; Riga, MS; Troyano-Rodríguez,, E. Effect of hallucinogens on neuronal activity. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 75-105. 902 kB. https://doi.org/10.1007/7854_2017_473
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #35 LC,MS,NMR,IR
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #41
May, JA; Chen, H; Rusinko, A; Lynch, VM; Sharif, NA; McLaughlin, MA. A novel and selective 5-HT2 receptor agonist with ocular hypotensive activity: (S)-(+)-1-(2-Aminopropyl)-8,9-dihydropyrano[3,2-e]indole. J. Med. Chem., 1 Sep 2003, 46 (19), 4188–4195. 126 kB. https://doi.org/10.1021/jm030205t #3 MS,NMR
May, JA; Dantanarayana, AP; Zinke, PW; McLaughlin, MA; Sharif, NA. 1-((S)-2-Aminopropyl)-1H-indazol-6-ol: A potent peripherally acting 5-HT2 receptor agonist with ocular hypotensive activity. J. Med. Chem., 12 Jan 2006, 49 (1), 318–328. 124 kB. https://doi.org/10.1021/jm050663x #1 MS,NMR
Delille, HK; Mezler, M; Marek, GJ. The two faces of the pharmacological interaction of mGlu2 and 5-HT2A – Relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology, 1 Jul 2013, 70, 296-305. 654 kB. https://doi.org/10.1016/j.neuropharm.2013.02.005
Ly, C; Greb, AC; Cameron, LP; Wong, JM; Barragan, EV; Wilson, PC; Burbach, KF; Zarandi, SS; Sood, A; Paddy, MR; Duim, WC; Dennis, MY; McAllister, AK; Ori-McKenney, KM; Gray, JA; Olson, DE. Psychedelics promote structural and functional neural plasticity. Cell Rep., 1 Jun 2018, 23 (11), 3170–3182. 6.0 MB. https://doi.org/10.1016/j.celrep.2018.05.022 #DOI
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB.
Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 27–37. 497 kB. Rhodium.
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #22gg
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #41
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #10nn
Hoffman, AJ. Synthesis and pharmacological evaluation of N(6)-alkyl norlysergic acid N,N-diethylamide derivatives. Ph. D. Thesis, Purdue University, 1 Aug 1987. 9.3 MB. NMR
Flanagan, TW; Nichols, CD. Psychedelics as anti-inflammatory agents. Int. Rev. Psychiatry, 1 Sep 2012, 26 (3), 241-257. 1.3 MB. https://doi.org/10.1080/09540261.2018.1481827 #DOI
Maurer, HH. Chemistry, pharmacology, and metabolism of emerging drugs of abuse. Ther. Drug Monit., 1 Oct 2010, 32 (5), 544–549. 142 kB. https://doi.org/10.1097/FTD.0b013e3181eea318 #DOI
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #DOI GC,LC,MS,UV
EMCDDA. New drugs in Europe, 2006, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2007. 375 kB. #DOI
Monte, AP; Marona-Lewicka, D; Parker, MA; Wainscott, DB; Nelson, DL; Nichols, DE. Dihydrobenzofuran analogues of hallucinogens. 3. 1 Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups. J. Med. Chem., 1 Jan 1996, 39 (15), 2953–2961. 290 kB. https://doi.org/10.1021/jm960199j #1c
Glennon, RA; Young, R; Benington, F; Morin, RD. Behavioral and serotonin receptor properties of 4-substituted derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem., 1 Oct 1982, 25 (10), 1163–1168. 780 kB. https://doi.org/10.1021/jm00352a013 #8 NMR,other
Rangisetty, JB; Dukat, M; Dowd, CS; Herrick-Davis, K; DuPre, A; Gadepalli, S; Teitler, M; Kelley, CR; Sharif, NA; Glennon, RA. 1-[2-Methoxy-5-(3-phenylpropyl)]-2-aminopropane unexpectedly shows 5-HT2A serotonin receptor affinity and antagonist character. J. Med. Chem., 1 Jan 2001, 44 (20), 3283–3291. 115 kB. https://doi.org/10.1021/jm0100739 #1b NMR
May, JA; Sharif, NA; Chen, H; Liao, JC; Kelly, CR; Glennon, RA; Young, R; Li, J; Rice, KC; France, CP. Pharmacological properties and discriminative stimulus effects of a novel and selective 5-HT2 receptor agonist AL-38022A [(S)-2-(8,9-dihydro-7H-pyrano[2,3-g]indazol-1-yl)-1-methylethylamine]. Pharmacol. Biochem. Behav., 1 Jan 2009, 91 (3), 307–314. 476 kB. https://doi.org/10.1016/j.pbb.2008.07.015 #DOI
Johnson, MW; Griffiths, RR; Hendricks, PS; Henningfield, JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 1 Nov 2018, 142, 143-166. 2.5 MB. https://doi.org/10.1016/j.neuropharm.2018.05.012 #DOI
Glennon, RA; Dukat, M; El-Bermawy, M; Law, H; De Los Angeles, J; Teitler, M; King, A; Herrick-Davis, K. Influence of amine substituents on 5-HT2A versus 5-HT2C binding of phenylalkyl- and indolylalkylamines. J. Med. Chem., 1 Jun 1994, 37 (13), 1929–1935. 1.1 MB. https://doi.org/10.1021/jm00039a004 #2 NMR,IR
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #DOI
Kronstrand, R; Guerrieri, D; Vikingsson, S; Wohlfarth, A; Gréen, H. Fatal poisonings associated with new psychoactive substances. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 495–541. 477 kB. https://doi.org/10.1007/164_2018_110 #DOI
McCorvy, JD. Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: Insights into the molecular actions of psychedelics. Ph. D. Thesis, Purdue University, 1 Jan 2012. 3.9 MB. #DOI
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #HP-018
Monte, AP. Structure-activity relationships of hallucinogens: Design, synthesis, and pharmacological evaluation of a series of conformationally restricted phenethylamines. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Aug 1995. 10.7 MB. #DOI MS,NMR
Glennon, RA; Bondarev, ML; Khorana, N; Young, R. β-Oxygenated analogues of the 5-HT2A serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem., 1 Jan 2004, 47 (24), 6034–6041. 146 kB. https://doi.org/10.1021/jm040082s #1b NMR
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #DOI
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 (896). 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #DOI
Sadzot, B; Baraban, JM; Glennon, RA; Lyon, RA; Leonhardt, S; Jan, C; Titeler, M. Hallucinogenic drug interactions at human brain 5-HT2 receptors: implications for treating LSD-induced hallucinogenesis. Psychopharmacology, 1 Aug 1989, 98 (4), 495–499. 895 kB. https://doi.org/10.1007/BF00441948 #DOI
Klagges, J; Burgos-Villaseca, J; Benavente-Schonhaut, S; Malhue, V; Hernandez, A; Burgos, H; Castro-Castillo, V; Sáez-Briones, P. Behavioral characterization of the acute effects in rats of 2,4-DMA (2,4-dimethoxyamphetamine) as precursor of atypical psychotropic derivatives. ResearchGate, 23 Sep 2015. 312 kB. https://doi.org/10.13140/RG.2.1.3507.8167 #DOI
Sáez-Briones, P; Hernández, A. MDMA (3,4-Methylenedioxymethamphetamine) Analogues as Tools to Characterize MDMA-Like Effects: An Approach to Understand Entactogen Pharmacology. Curr. Neuropharmacol., 1 Sep 2013, 11 (5), 521–534. 1.4 MB. https://doi.org/10.2174/1570159X11311050007 #DOI
Palamar, JJ; Acosta, P. A qualitative descriptive analysis of effects of psychedelic phenethylamines and tryptamines. Hum. Psychopharmacol. Clin. Exp., 1 Jan 2020, 35 (1), e2719. 764 kB. https://doi.org/10.1002/hup.2719 #DOI
Pottie, E; Cannaert, A; Stove, CP. In vitro structure–activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch. Toxicol., 1 Oct 2020, 94 (10), 3449–3460. 919 kB. https://doi.org/10.1007/s00204-020-02836-w #DOI
Flanagan, TW; Billac, GB; Landry, AN; Sebastian, MN; Cormier, SA; Nichols, CD. Structure–activity relationship analysis of psychedelics in a rat model of asthma reveals the anti-inflammatory pharmacophore. ACS Pharmacol. Transl. Sci., 9 Apr 2021, 4 (2), 488-502. 13.3 MB. https://doi.org/10.1021/acsptsci.0c00063 #R-DOI
Fenderson5555. Trifluoromethylated phenethylamines. , 17 May 2021. . Fenderson5555 23.7 MB. #DOI
Nakagawasai, O; Arai, Y; Satoh, S; Satoh, N; Neda, M; Hozumi, M; Oka, R; Hiraga, H; Tadano, T. Monoamine oxidase and head-twitch response in mice: Mechanisms of α-methylated substrate derivatives. Neurotoxicology, 1 Jan 2004, 25 (1), 223–232. 169 kB. https://doi.org/10.1016/S0161-813X(03)00101-3 #DOI
Kozlowska, U; Nichols, C; Wiatr, K; Figiel, M. From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. J. Neurochem., 13 Sep 2021, 95 (6), 1575-1584. 35.4 MB. https://doi.org/10.1111/jnc.15509 #DOI
Rørsted, EM; Jensen, AA; Kristensen, JL. 25CN‐NBOH: A selective agonist for in vitro and in vivo investigations of the serotonin 2A receptor. ChemMedChem, 21 Aug 2021, 16 (21), 3263-3270. 1.7 MB. https://doi.org/10.1002/cmdc.202100395 #DOI
Dong, C; Ly, C; Dunlap, LE; Vargas, MV; Sun, J; Hwang, I; Azinfar, A; Oh, WC; Wetsel, WC; Olson, DE; Tian, L. Psychedelic-inspired drug discovery using an engineered biosensor. Cell, 13 May 2021, 184 (10), 2779-2792.e18. 8.3 MB. https://doi.org/10.1016/j.cell.2021.03.043 #DOI NMR
Cumming, P; Scheidegger, M; Dornbierer, D; Palner, M; Quednow, BB; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 1 Jan 2021, 26 (9), 2451. 3.5 MB. https://doi.org/10.3390/molecules26092451 #16
Kikura-Hanajiri, R; Kawamura, M; Uchiyama, N; Ogata, J; Kamakura, H; Saisho, K; Goda, Y. Analytical data of designated substances (shitei-yakubutsu) controlled by the pharmaceutical affairs law in Japan, Part I: GC-MS and LC-MS. Yakugaku Zasshi, 1 Jun 2008, 128 (6), 971–979. 1.4 MB. https://doi.org/10.1248/yakushi.128.971 #DOI Incorrect structures drawn. Corrected structures in errata page at end. GC,LC,MS,UV
Uchiyama, N; Kawamura, M; Kamakura, H; Kikura-Hanajiri, R; Goda, Y. Analytical data of designated substances (shitei-yakubutsu) controlled by the pharmaceutical affairs law in Japan, Part II: Color test and TLC. Yakugaku Zasshi, 1 Jan 2008, 128 (6), 981–987. 406 kB. https://doi.org/10.1248/yakushi.128.981 #DOI TLC
Kristensen, JL; Jensen, AA; Märcher-Rørsted, E; Leth-Petersen, S. 5-HT2A agonists for use in treatment of depression. Patent US 2021/0137908 A1, 13 May 2021. 8.2 MB. #DOI LC,MS,NMR,TLC
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #36 In German. MS,NMR,IR
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #DOI
Dowd, CS; Herrick-Davis, K; Egan, C; DuPre, A; Smith, C; Teitler, M; Glennon, RA. 1-[4-(3-Phenylalkyl)phenyl]-2-aminopropanes as 5-HT2A partial agonists. J. Med. Chem., 10 Aug 2000, 43 (16), 3074–3084. 271 kB. https://doi.org/10.1021/jm9906062 #2 NMR,IR
Canal, CE; Booth, RG; Morgan, D. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model. Neuropharmacology, 1 Jul 2013, 70, 112–121. 1.1 MB. https://doi.org/10.1016/j.neuropharm.2013.01.007 #DOI
Glennon, RA; Rosecrans, JA. Indolealkylamine and phenalkylamine hallucinogens: A brief overview. Neurosci. Biobehav. Rev., 1 Jan 1982, 6 (4), 489–497. 895 kB. https://doi.org/10.1016/0149-7634(82)90030-6 #8b
McKenna, DJ; Saavedra, JM. Autoradiography of LSD and 2,5-dimethoxyphenylisopropylamine psychotomimetics demonstrates regional, specific cross-displacement in the rat brain. Eur. J. Pharmacol., 13 Oct 1987, 142 (2), 313–315. 263 kB. https://doi.org/10.1016/0014-2999(87)90121-X
Clare, BW. The frontier orbital phase angles: Novel QSAR descriptors for benzene derivatives, applied to phenylalkylamine hallucinogens. J. Med. Chem., 24 Sep 1998, 41 (20), 3845–3856. 239 kB. https://doi.org/10.1021/jm980144c #41
Trachsel, D. Synthesis of novel (phenylalkyl)amines for the investigation of structure-activity relationships. Part 3. 4-Ethynyl-2,5-dimethoxyphenethylamine (= 4-Ethynyl-2,5-dimethoxybenzeneethanamine; 2C-YN). Helv. Chim. Acta, 28 Aug 2003, 86 (8), 2754–2759. 84 kB. https://doi.org/10.1002/hlca.200390224 #2b NMR,IR
Fantegrossi, WE; Murnane, KS; Reissig, CJ. The behavioral pharmacology of hallucinogens. Biochem. Pharmacol., 1 Jan 2008, 75 (1), 17–33. 359 kB. https://doi.org/10.1016/j.bcp.2007.07.018 #DOI