Nichols, DE; Frescas, SP; Chemel, BR; Rehder, KS; Zhong, D; Lewin, AH. High specific activity tritium-labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): A high-affinity 5-HT2A receptor-selective agonist radioligand. Bioorg. Med. Chem., 1 Jan 2008, 16 (10), 6116–6123. 251 kB. https://doi.org/10.1016/j.bmc.2008.04.050
Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #25I-NBOMe
Ettrup, A; Hansen, M; Santini, MA; Paine, J; Gillings, N; Palner, M; Lehel, S; Herth, MM; Madsen, J; Kristensen, JL; Begtrup, M; Knudsen, GM. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur. J. Nucl. Med. Mol. Imaging, 1 Apr 2011, 38 (4), 681–693. 752 kB. https://doi.org/10.1007/s00259-010-1686-8
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #236 In German. MS,NMR,IR
Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133 #32
Anon. JW, Personal communication of unpublished research. 1 Dec 2011.
Braden, MR; Parrish, JC; Naylor, JC; Nichols, DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol. Pharmacol., 1 Jan 2006, 70 (6), 1956–1964. 361 kB. https://doi.org/10.1124/mol.106.028720
Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. https://doi.org/10.1007/s10822-010-9400-2
Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB. #236
Hansen, M. Design and synthesis of selective serotonin receptor agonists for positron emission tomography imaging of the brain. Ph. D. Thesis, University of Copenhagen, 16 Dec 2012. 7.9 MB. #2.1 NMR
Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.
Casale, JF; Hays, PA. Characterization of eleven 2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (NBOMe) derivatives and differentiation from their 3- and 4-methoxybenzyl analogues—Part I. Microgram J., 1 Jan 2012, 9 (2), 84–109. 4.6 MB. #16: 25I-NB2OMe GC,MS,IR
Ettrup, A; Palner, M; Gillings, N; Santini, MA; Hansen, M; Kornum, BR; Rasmussen, LK; Nagren, K; Madsen, J; Begtrup, M; Knudsen, GM. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET. J. Nucl. Med., 1 Nov 2010, 51 (11), 1763–1770. 548 kB. https://doi.org/10.2967/jnumed.109.074021
Heim, R; Elz, S. Novel extremely potent partial 5-HT2A-receptor agonists: Successful application of a new structure-activity concept. Arch. Pharm. Pharm. Med. Chem., , 333 (Suppl. 1), 18. 566 kB. #3 Poster abstract
Heim, R; Pertz, HH; Elz, MZS. Stereoselective synthesis, absolute configuration and 5-HT2A-receptor agonism of chiral 2-methoxybenzylamines. Arch. Pharm. Pharm. Med. Chem., , 335 (Suppl. 1), 82. 573 kB. #5 Poster abstract
EMCDDA. Report on the risk assessment of 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25I-NBOMe), European Monitoring Centre for Drugs and Drug Addiction, Lisbon, . 500 kB. #25I-NBOMe
Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. https://doi.org/10.1007/s11064-014-1253-y
Nichols, DE; Sassano, MF; Halberstadt, AL; Klein, LM; Brandt, SD; Elliott, SP; Fiedler, WJ. N-Benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem. Neurosci., 15 Jul 2015, 6 (7), 1165-1175. 406 kB. https://doi.org/10.1021/cn500292d
Brandt, SD; Elliott, SP; Kavanagh, PV; Dempster, NM; Meyer, MR; Maurer, HH; Nichols, DE. Analytical characterization of bioactive N-benzyl-substituted phenethylamines and 5-methoxytryptamines. Rapid Commun. Mass Spectrom., 2 Mar 2015, 29 (7), 573–584. 2.2 MB. https://doi.org/10.1002/rcm.7134
Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. BLOTTER, 1 Aug 2015, 1 (1). 2.6 MB. https://doi.org/10.16889/isomerdesign-1
Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. Supplementary Data. BLOTTER, 1 Aug 2015, 1 (1). 11.9 MB. https://doi.org/10.16889/isomerdesign-1-supp
Hays, PA; Casale, JF. Characterization of eleven 2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (NBOMe) derivatives and differentiation from their 3-and 4-methoxybenzyl analogues - Part II. Microgram J., 1 Jan 2014, 11 (1–4), 3–22. 8.1 MB. #16: 25I-NB2OMe NMR
Prabhakaran, J; Underwood, MD; Kumar, JSD; Simpson, NR; Kassir, SA; Bakalian, MJ; Mann, JJ; Arango, V. Synthesis and in vitro evaluation of [18F]FECIMBI-36: A potential agonist PET ligand for 5-HT2A/2C receptors. Bioorg. Med. Chem. Lett., 15 Sep 2015, 25 (18), 3933–3936. 603 kB. https://doi.org/10.1016/j.bmcl.2015.07.034
Kaizaki-Mitsumoto, A; Noguchi, N; Yamaguchi, S; Odanaka, Y; Matsubayashi, S; Kumamoto, H; Fukuhara, K; Funada, M; Wada, K; Numazawa, S. Three 25-NBOMe-type drugs, three other phenethylamine-type drugs (25I-NBMD, RH34, and escaline), eight cathinone derivatives, and a phencyclidine analog MMXE, newly identified in ingredients of drug products before they were sold on the drug market. Forensic Toxicol., 1 Jan 2016, 34 (1), 108–114. 854 kB. https://doi.org/10.1007/s11419-015-0293-6
Nielsen, LM; Holm, NB; Leth-Petersen, S; Kristensen, JL; Olsen, L; Linnet, K. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test. Anal., 1 May 2017, 9 (5), 671-679. 553 kB. https://doi.org/10.1002/dta.2031
Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Neuropharmacology of New Psychoactive Substances (NPS): The Science Behind the Headlines; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 18 Jan 2017; pp 283-311. 826 kB. https://doi.org/10.1007/7854_2016_64
Halberstadt, AL; Geyer, MA. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology, 1 Feb 2014, 77, 200–207. 1.4 MB. https://doi.org/10.1016/j.neuropharm.2013.08.025
Wohlfarth, A; Roman, M; Andersson, M; Kugelberg, FC; Diao, X; Carlier, J; Eriksson, C; Wu, X; Konradsson, P; Josefsson, M; Huestis, MA; Kronstrand, R. 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry. Drug Test. Anal., 1 May 2017, 9 (5), 680-698. 837 kB. https://doi.org/10.1002/dta.2044
Hyperlab. Hyperlab new compounds. 29 Sep 2014. 232 kB. Note: Contains links to hyperlab.info that require elevated access/karma to follow.
Edmunds, R; Donovan, R; Reynolds, D. The analysis of illicit 25X-NBOMe seizures in Western Australia. Drug Test. Anal., 1 Apr 2018, 10 (4), 786-790. 507 kB. https://doi.org/10.1002/dta.2260
Martins, D; Barratt, MJ; Pires, CV; Carvalho, H; Ventura, M; Fornís, I; Valente, H. The detection and prevention of unintentional consumption of DOx and 25x-NBOMe at Portugal’s Boom Festival. Hum. Psychopharmacol. Clin. Exp., 1 May 2017, 32 (3), e2608. 400 kB. https://doi.org/10.1002/hup.2608
EMCDDA. New drugs in Europe, 2012, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2013. 773 kB. #32
Nichols, DE; Grob, CS. Is LSD toxic? Forensic Sci. Int., 1 Mar 2018, 284, 141–145. 415 kB. https://doi.org/10.1016/j.forsciint.2018.01.006
Jensen, AA; McCorvy, JD; Leth-Petersen, S; Bundgaard, C; Liebscher, G; Kenakin, TP; Bräuner-Osborne, H; Kehler, J; Kristensen, JL. Detailed characterization of the in vitro pharmacological and pharmacokinetic properties of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine (25CN-NBOH), a highly selective and brain-penetrant 5-HT2A receptor agonist. J. Pharmacol. Exp. Ther., 1 Jun 2017, 361 (3), 441–453. 4.1 MB. https://doi.org/10.1124/jpet.117.239905 #25I-NBOMe
Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99, 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #25I-NBOMe
McGonigal, MK; Wilhide, JA; Smith, PB; Elliott, NM; Dorman, FL. Analysis of synthetic phenethylamine street drugs using direct sample analysis coupled to accurate mass time of flight mass spectrometry. Forensic Sci. Int., 1 Jun 2017, 275, 83–89. 2.3 MB. https://doi.org/10.1016/j.forsciint.2017.02.025 #25I-NBOMe
EMCDDA. New drugs in Europe, 2014, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Jul 2015. 879 kB.
EMCDDA. New drugs in Europe, 2013, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Jul 2014. 311 kB.
Hansen, M; Phonekeo, K; Paine, JS; Leth-Petersen, S; Begtrup, M; Bräuner-Osborne, H; Kristensen, JL. Synthesis and structure–activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem. Neurosci., 19 Mar 2014, 5 (3), 243-249. 21.5 MB. https://doi.org/10.1021/cn400216u #1a
Zawilska, JB; Andrzejczak, D. Next generation of novel psychoactive substances on the horizon – A complex problem to face. Drug Alcohol Depend., 1 Jan 2015, 157, 1-17. 3.0 MB. https://doi.org/10.1016/j.drugalcdep.2015.09.030
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #72
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Rychert, M; Wilkins, C. What products are considered psychoactive under New Zealand's legal market for new psychoactive substances (NPS, ‘legal highs’)? Implications for law enforcement and penalties. Drug Test. Anal., 1 Aug 2016, 8 (8), 768-778. 493 kB. https://doi.org/10.1002/dta.1943
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Poklis, JL; Devers, KG; Arbefeville, EF; Pearson, JM; Houston, E; Poklis, A. Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci. Int., 1 Jan 2014, 234, e14-e20. 826 kB. https://doi.org/10.1016/j.forsciint.2013.10.015
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #65
Lum, BJ; Brophy, JJ; Hibbert, DB. Identification of 4-substituted 2-(4-x-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25X-NBOMe) and analogues by gas chromatography–mass spectrometry analysis of heptafluorobutyric anhydride (HFBA) derivatives. Aust. J. Forensic Sci., 2 Jan 2016, 48 (1), 59–73. 5.5 MB. https://doi.org/10.1080/00450618.2015.1026274 #25I-NBOMe
Adamowicz, P; Zuba, D. Discrimination among designer drug isomers by chromatographic and spectrometric methods. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 211–232. 1.1 MB.
Poklis, JL; Raso, SA; Alford, KN; Poklis, A; Peace, MR. Analysis of 25I-NBOMe, 25B-NBOMe, 25C-NBOMe and other dimethoxyphenyl-N-[(2-methoxyphenyl)methyl]ethanamine derivatives on blotter paper. J. Anal. Toxicol., 1 Oct 2015, 39 (8), 617–623. 495 kB. https://doi.org/10.1093/jat/bkv073 #25I-NBOMe
Laskowski, LK; Elbakoush, F; Calvo, J; Exantus-Bernard, G; Fong, J; Poklis, JL; Poklis, A; Nelson, LS. Evolution of the NBOMes: 25C- and 25B- Sold as 25I-NBOMe. J. Med. Toxicol., 1 Jun 2015, 11 (2), 237–241. 482 kB. https://doi.org/10.1007/s13181-014-0445-9 #25I-NBOMe
Souza, GA; Arantes, LC; Guedes, TJ; de Oliveira, AC; Marinho, PA; Muñoz, RAA; dos Santos, WTP. Voltammetric signatures of 2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamines on boron-doped diamond electrodes: Detection in blotting paper samples. Electrochem. Commun., 1 Sep 2017, 82, 121–124. 748 kB. https://doi.org/10.1016/j.elecom.2017.08.001 #25I-NBOMe other
Elz, S; Kläß, T; Heim, R; Warnke, U; Pertz, HH. Development of highly potent partial agonists and chiral antagonists as tools for the study of 5-HT2A-receptor mediated functions. N-S. Arch. Pharmacol., , 365 (Suppl. 1), R29. 630 kB. #5
Baumeister, D; Barnes, G; Giaroli, G; Tracy, D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther. Adv. Psychopharmacol., 1 Aug 2014, 4 (4), 156–169. 1.1 MB. https://doi.org/10.1177/2045125314527985 #25I-NBOMe
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #25I-NBOMe
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S2 Phenethylamines 25I-NBOMe
Kronstrand, R; Guerrieri, D; Vikingsson, S; Wohlfarth, A; Gréen, H. Fatal poisonings associated with new psychoactive substances. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 495–541. 477 kB. https://doi.org/10.1007/164_2018_110 #25I-NBOMe
McCorvy, JD. Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: Insights into the molecular actions of psychedelics. Ph. D. Thesis, Purdue University, 1 Jan 2012. 3.9 MB. #INBMeO
Pertz, HH; Heim, R; Elz, S. N-Benzylated phenylethanamines are highly potent partial agonists at 5-HT2A receptors. Arch. Pharm. Pharm. Med. Chem., , 333 (Suppl. 2), 30. 583 kB. #3b-OMe Poster abstract
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #HP-021
Sasaki, R; Kato, M; Matsumoto, T; Udagawa, A; Matsuzaki, R. Analytical data of designer drugs of synthetic phenethylamines. JCCL, 1 Dec 2015, (55), 43–63. 637 kB. #3 Japanese, English abstract MS,NMR,IR,UV
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #25I-NBOMe
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 (896). 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #25i-NBOMe
Poulie, CBM; Jensen, AA; Halberstadt, AL; Kristensen, JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem. Neurosci., 2 Dec 2020, 11 (23), 3860-3869. 860 kB. https://doi.org/10.1021/acschemneuro.9b00528 #25I-NBOMe
Lützen, E; Holtkamp, M; Stamme, I; Schmid, R; Sperling, M; Pütz, M; Karst, U. Multimodal imaging of hallucinogens 25C- and 25I-NBOMe on blotter papers. Drug Test. Anal., 17 Dec 2019, 12 (4), 465-471. 9.6 MB. https://doi.org/10.1002/dta.2751 #25I-NBOMe LC,MS,other
Palamar, JJ; Acosta, P. A qualitative descriptive analysis of effects of psychedelic phenethylamines and tryptamines. Hum. Psychopharmacol. Clin. Exp., 1 Jan 2020, 35 (1), e2719. 764 kB. https://doi.org/10.1002/hup.2719 #25I-NBOMe
Elbardisy, HM; Foster, CW; Marron, J; Mewis, RE; Sutcliffe, OB; Belal, TS; Talaat, W; Daabees, HG; Banks, CE. Quick test for determination of N-bombs (Phenethylamine derivatives, NBOMe) using high-performance liquid chromatography: A comparison between photodiode array and amperometric detection. ACS Omega, 10 Sep 2019, 4 (11), 14439–14450. 3.4 MB. https://doi.org/10.1021/acsomega.9b01366 #2d LC
Pottie, E; Cannaert, A; Stove, CP. In vitro structure–activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch. Toxicol., 1 Oct 2020, 94 (10), 3449–3460. 919 kB. https://doi.org/10.1007/s00204-020-02836-w #25I-NBOMe
Kamińska, K; Świt, P; Malek, K. 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOME): A harmful hallucinogen teview. J. Anal. Toxicol., 1 Nov 2020, 44 (9), 947-956. 591 kB. https://doi.org/10.1093/jat/bkaa022 #25I-NBOMe
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #25I-NBOMe
Åstrand, A; Guerrieri, D; Vikingsson, S; Kronstrand, R; Green, H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci. Int., 1 Dec 2020, 317, 110553. 1.7 MB. https://doi.org/10.1016/j.forsciint.2020.110553 #25I-NBOMe
Herian, M; Wojtas, A; Sobocińska, MK; Skawski, M; González-Marín, A; Gołembiowska, K. Contribution of serotonin receptor subtypes to hallucinogenic activity of 25I-NBOMe and to its effect on neurotransmission. Pharmacol. Rep., 1 Dec 2020, 72 (6), 1593–1603. 1.2 MB. https://doi.org/10.1007/s43440-020-00181-4 #25I-NBOMe
Nash, C; Cox, M; Trobbiani, S; Johnston, MR. Identification and characterization of a masked NBOMe precursor. JCLIC, 1 Mar 2017, 27 (2), 12-21. 903 kB. #1 MS,NMR,IR
Nichols, DE. 25I-NBOMe 1H NMR spectrum. 2 Jun 2012. 570 kB. #25I-NBOMe NMR
Rørsted, EM; Jensen, AA; Kristensen, JL. 25CN‐NBOH: A selective agonist for in vitro and in vivo investigations of the serotonin 2A receptor. ChemMedChem, 21 Aug 2021, 16 (21), 3263-3270. 1.7 MB. https://doi.org/10.1002/cmdc.202100395 #25I-NBOMe
Cumming, P; Scheidegger, M; Dornbierer, D; Palner, M; Quednow, BB; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 1 Jan 2021, 26 (9), 2451. 3.5 MB. https://doi.org/10.3390/molecules26092451 #31, 34
de Oliveira Magalhães, L; Arantes, LC; Braga, JWB. Identification of NBOMe and NBOH in blotter papers using a handheld NIR spectrometer and chemometric methods. Microchem. J., 1 Jan 2019, 144, 151–158. 2.7 MB. https://doi.org/10.1016/j.microc.2018.08.051 #25I-NBOMe
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #25I-NBOMe