Leung, AY; Paul, AG. Baeocystin and norbaeocystin: New analogs of psilocybin from Psilocybe baeocystis. J. Pharm. Sci., 1 Jan 1968, 57 (10), 1667–1671. 399 kB. https://doi.org/10.1002/jps.2600571007 MS,IR,UV
Nichols, DE; Frescas, SP. Improvements to the synthesis of psilocybin and a facile method for preparing the O-acetyl prodrug of psilocin. Synthesis, 1 Jun 1999, 1999, 935–938. 1.5 MB. https://doi.org/10.1055/s-1999-3490 #1 NMR
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Meyers-Riggs, B. 4-Hydroxy tryptamines. countyourculture, countyourculture: rational exploration of the underground, 7 Jul 2012.
Meyers-Riggs, B. Grid biosynthesis of psilocybin. countyourculture, countyourculture: rational exploration of the underground, 5 Dec 2011.
Wurst, M; Kysilka, R; Flieger, M. Psychoactive tryptamines from Basidiomycetes. Folia Microbiol., 1 Feb 2002, 47 (1), 3–27. 3.1 MB. https://doi.org/10.1007/BF02818560 #PSB
Vollenweider, FX; Kometer, M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat. Rev. Neurosci., 1 Sep 2010, 11 (9), 642–651. 588 kB. https://doi.org/10.1038/nrn2884
Agurell, S; Nilsson, JLG. Biosynthesis of psilocybin. Part II. Incorporation of labelled tryptamine derivatives. Acta Chem. Scand., 1 Jan 1968, 22 (4), 1210–1218. 805 kB. https://doi.org/10.3891/acta.chem.scand.22-1210 #XVI
Gross, ST. Detecting psychoactive drugs in the developmental stages of mushrooms. J. Forensic Sci., 1 May 2000, 45 (3), 527–537. 6.2 MB. https://doi.org/10.1520/JFS14725J MS
Gross, ST. Psychotropic drugs in developmental mushrooms: A case study review. J. Forensic Sci., 1 Nov 2002, 47 (6), 1298-1302. 369 kB. https://doi.org/10.1520/JFS15564J GC,MS
Shulgin, AT. Profiles of psychedelic drugs. 8. Psilocybin. J. Psychedelic Drugs, 1 Jan 1980, 12 (1), 79-79. 681 kB. https://doi.org/10.1080/02791072.1980.10471557
Bunch, KS. Psilocybin and spiritual experience. Psy. D. Thesis, Alliant International University, San Francisco, CA, USA, 1 Aug 2009. 5.7 MB.
McKenna, DJ. Monoamine oxidsase inhibitors in Amazonian hallucinogenic plants: Ethnobotanical, phytochemical, and pharmacological investigations. Ph. D. Thesis, University of British Columbia, BC, Canada, 26 Apr 1984. 12.2 MB. LC,MS,UV,TLC
Passie, T; Seifert, J; Schneider, U; Emrich, HM. The pharmacology of psilocybin. Addict. Biol., 1 Jan 2002, 7 (4), 357–364. 184 kB. https://doi.org/10.1080/1355621021000005937
Sard, H; Kumaran, G; Morency, C; Roth, BL; Toth, BA; Hec, P; Shuster, L. SAR of psilocybin analogs: Discovery of a selective 5-HT2C agonist. Bioorg. Med. Chem. Lett., 1 Jan 2005, 15 (20), 4555–4599. 134 kB. https://doi.org/10.1016/j.bmcl.2005.06.104 #1
Nichols, DE. Commentary on: “Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance” by Griffiths et al. Psychopharmacology, 1 Aug 2006, 187 (3), 284–286. 71 kB. https://doi.org/10.1007/s00213-006-0458-4
Gartz, J. Extraction and analysis of indole derivatives from fungal biomass. J. Basic. Microbiol., 1 Jan 1994, 34 (1), 17–22. 614 kB. https://doi.org/10.1002/jobm.3620340104
Hofmann, A; Heim, R; Brack, A; Kobel, H; Frey, A; Ott, H; Petrzilka, T; Troxler, F. Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv. Chim. Acta, 1 Jan 1959, 42 (5), 1557–1572. 1.1 MB. https://doi.org/10.1002/hlca.19590420518 #Psilocybin IR
Troxler, F; Seemann, F; Hofmann, A. Abwandlungsprodukte von Psilocybin und Psilocin. 2. Mitteilung über synthetische Indolverbindungen. Helv. Chim. Acta, 1 Jan 1959, 42 (6), 2073–2103. 1.6 MB. https://doi.org/10.1002/hlca.19590420638 #I UV
Griffiths, RR; Richards, WA; McCann, U; Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology, 1 Aug 2006, 187 (3), 268–283. 342 kB. https://doi.org/10.1007/s00213-006-0457-5
Morris, H. Blood Spore: Of Murder and Mushrooms. Harper’s Magazine, 1 Jul 2013, 41–56. 13.8 MB.
Rodriguez-Cruz, SE. Analysis and characterization of psilocybin and psilocin using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) with collision-induced-dissociation (CID) and source-induced-dissociation (SID). Microgram J., 1 Jul 2005, 3 (3–4), 175–182. 560 kB. LC,MS
Wiseman-Distler, MH; Sourkes, TL. The effect of 4-hydroxyindoles on the metabolism of 5-hydroxytryptamine (serotonin). Ann. N. Y. Acad. Sci., 1 Jan 1962, 96 (1), 142–151. 458 kB. https://doi.org/10.1111/j.1749-6632.1962.tb50109.x #Psilocybin
Pellegrini, M; Rotolo, MC; Marchei, E; Pacifici, R; Saggio, F; Pichini, S. Magic truffles or philosopher’s stones: a legal way to sell psilocybin? Drug Test. Anal., 1 Mar 2013, 5 (3), 182–185. 219 kB. https://doi.org/10.1002/dta.1400
Heim, R; Genest, K; Hughes, DW; Belec, G. Botanical and chemical characterisation of a forensic mushroom specimen of the genus psilocybe. J. Forensic Sci. Soc., 1 Jul 1966, 6 (4), 192–201. 2.1 MB. https://doi.org/10.1016/S0015-7368(66)70336-3 #Psilocybin UV,TLC
Gouzoulis-Mayfrank, E. Differential actions of an entactogen compared to a stimulant and a hallucinogen in healthy humans. Heffter Rev., , 2, 64–72. 261 kB.
Wark, C. A social and cultural history of the federal prohibition of psilocybin. Ph. D. Thesis, University of Missouri-Columbia, Columbia, MO, 1 Aug 2007. 2.2 MB.
Fricke, J; Blei, F; Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int., 20 Aug 2017, 56 (40), 12352-12355. 1.8 MB. https://doi.org/10.1002/anie.201705489
Brandt, SD; Martins, CPB. Analytical methods for psychoactive N,N-dialkylated tryptamines. Trends Anal. Chem., 1 Sep 2010, 29 (8), 858–869. 446 kB. https://doi.org/10.1016/j.trac.2010.04.008 #16
Fricke, J; Sherwood, A; Kargbo, R; Orry, A; Blei, F; Naschberger, A; Rupp, B; Hoffmeister, D. Enzymatic route toward 6‐methylated baeocystin and psilocybin. ChemBioChem, 31 May 2019, 20 (22), 2824-2829. 3.2 MB. https://doi.org/10.1002/cbic.201900358 #1 NMR
Swanson, LR. Unifying theories of psychedelic drug effects. Front. Pharmacol., 2 Mar 2018, 9 (172). 1.7 MB. https://doi.org/10.3389/fphar.2018.00172
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9 TLC
Anastos, N; Barnett, N; Lewis, S; Gathergood, N; Scammells, P; Sims, D. Determination of psilocin and psilocybin using flow injection analysis with acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection respectively. Talanta, 15 Aug 2005, 67 (2), 354-359. 111 kB. https://doi.org/10.1016/j.talanta.2004.11.038 MS,NMR
Marek, GJ. Interactions of hallucinogens with the glutamatergic system: Permissive network effects mediated through cortical layer V pyramidal neurons. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 107-135. 1.2 MB. https://doi.org/10.1007/7854_2017_480
Hermle, L; Kraehenmann, R. Experimental psychosis research and schizophrenia—Similarities and dissimilarities in psychopathology. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 313-332. 446 kB. https://doi.org/10.1007/7854_2016_460
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
Barrett, FS; Griffiths, RR. Classic hallucinogens and mystical experiences: Phenomenology and neural correlates. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 137-158. 848 kB. https://doi.org/10.1007/7854_2017_474
McKenna, D; Riba, J. New world tryptamine hallucinogens and the neuroscience of ayahuasca. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2016; pp 283-311. 749 kB. https://doi.org/10.1007/7854_2016_472
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Bogenschutz, MP; Ross, S. Therapeutic applications of classic hallucinogens. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 361-391. 360 kB. https://doi.org/10.1007/7854_2016_464
Halpern, JH; Lerner, AG; Passie, T. A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 333-360. 579 kB. https://doi.org/10.1007/7854_2016_457
Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #29 LC,MS,NMR,IR
Beug, MW; Bigwood, J. Quantitative analysis of psilocybin and psilocin and Psilocybe baecystis (Singer and Smith) by high-performance liquid chromatography and by thin-layer chromatography. J. Chromatogr. A, 27 Mar 1981, 207 (3), 379-385. 514 kB. https://doi.org/10.1016/S0021-9673(00)88741-5 #I LC,TLC
Tylš, F; Páleníček, T; Horáček, J. Psilocybin – Summary of knowledge and new perspectives. Eur. Neuropsychopharmacol., 1 Mar 2014, 24 (3), 342–356. 710 kB. https://doi.org/10.1016/j.euroneuro.2013.12.006
Nicholas, CR; Henriquez, KM; Gassman, MC; Cooper, KM; Muller, D; Hetzel, S; Brown, RT; Cozzi, NV; Thomas, C; Hutson, PR. High dose psilocybin is associated with positive subjective effects in healthy volunteers. J. Psychopharmacol., 1 Jul 2018, 32 (7), 770-778. 1.3 MB. https://doi.org/10.1177/0269881118780713 #Psilocybin
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #29f
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #4g
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #XXIX
Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, . 3.9 MB. #Psilocybin
Johnson, MW; Griffiths, RR; Hendricks, PS; Henningfield, JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 1 Nov 2018, 142, 143-166. 2.5 MB. https://doi.org/10.1016/j.neuropharm.2018.05.012 #Psilocybin
Kamata, T; Nishikawa, M; Katagi, M; Tsuchihashi, H. Liquid chromatography-mass spectrometric and liquid chromatography-tandem mass spectrometric determination of hallucinogenic indoles psilocin and psilocybin in “Magic mushroom” samples. J. Forensic Sci., 5 Jan 2005, 50 (2), 1–5. 155 kB. https://doi.org/10.1520/JFS2004276 #PB LC,MS
Barry, TL; Petzinger, G; Zito, SW. GC/MS comparison of the West Indian aphrodisiac “Love Stone” to the Chinese medication “Chan Su”: Bufotenine and related bufadienolides. J. Forensic Sci., 1 Nov 1996, 41 (6), 1068–1073. 411 kB. https://doi.org/10.1520/JFS14052J #Psilocybin MS
Baumeister, D; Barnes, G; Giaroli, G; Tracy, D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther. Adv. Psychopharmacol., 1 Aug 2014, 4 (4), 156–169. 1.1 MB. https://doi.org/10.1177/2045125314527985 #Psilocybin
Hudkins, RL; Marino, MJ; Williams, M. Cognition. In Burger's Medicinal Chemistry and Drug Discovery; Abraham, DJ, Ed., John Wiley & Sons, Inc., 29 Jan 2010; pp 15–60. 784 kB. https://doi.org/10.1002/0471266949.bmc242 #53
Geiger, HA; Wurst, MG; Daniels, RN. DARK classics in chemical neuroscience: Psilocybin. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2438–2447. 580 kB. https://doi.org/10.1021/acschemneuro.8b00186 #1
Cameron, LP; Olson, DE. DARK classics in chemical neuroscience: N,N-Dimethyltryptamine (DMT). ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2344–2357. 1.4 MB. https://doi.org/10.1021/acschemneuro.8b00101 #10
Passie, T; Brandt, SD. Self-experiments with psychoactive substances: A historical perspective. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 69-110. 563 kB. https://doi.org/10.1007/164_2018_177 #Psilocybin
Fricke, J; Lenz, C; Wick, J; Blei, F; Hoffmeister, D. Production options for psilocybin: Making of the magic. Chem. Eur. J., 18 Jan 2019, 25 (4), 897–903. 1.8 MB. https://doi.org/10.1002/chem.201802758 #1
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #12 In German. MS,NMR,IR
Blei, F; Baldeweg, F; Fricke, J; Hoffmeister, D. Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions. Chem. Eur. J., 17 Jul 2018, 24 (40), 10028–10031. 969 kB. https://doi.org/10.1002/chem.201801047 #2 LC,MS,NMR
Yasuoka, T; Muroi, H; Okazaki, R; Matsumoto, Y; Terauchi, Y; Sasatani, T. Analysis of tryptamine group compounds. JCCL, 1 Jan 2003, (43), 63–69. 151 kB. #Psilocybin Japanese, English abstract LC,MS,NMR,IR,UV
Kang, S; Johnson, CL; Green, JP. Theoretical studies on the conformations of psilocin and mescaline. Mol. Pharmacol., 1 Sep 1973, 9 (5), 640–648. 6.9 MB. #Psilocybin other
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #Psilocybin
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 (896). 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #Psilocybin
Torrens-Spence, MP; Liu, C; Pluskal, T; Chung, YK; Weng, J. Monoamine biosynthesis via a noncanonical calcium-activatable aromatic amino acid decarboxylase in psilocybin mushroom. ACS Chem. Biol., 21 Dec 2018, 13 (12), 3343–3353. 5.9 MB. https://doi.org/10.1021/acschembio.8b00821 #psilocybin other
Lenz, C; Wick, J; Hoffmeister, D. Identification of ω-N-methyl-4-hydroxytryptamine (Norpsilocin) as a Psilocybe natural product. J. Nat. Prod., 27 Oct 2017, 80 (10), 2835–2838. 1.1 MB. https://doi.org/10.1021/acs.jnatprod.7b00407 #Psilocybin LC,MS,NMR
Milne, N; Thomsen, P; Knudsen, NM; Rubaszka, P; Kristensen, M; Borodina, I. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab. Eng., 1 Jul 2020, 60, 25–36. 2.4 MB. https://doi.org/10.1016/j.ymben.2019.12.007 #Psilocybin LC,MS
Blei, F; Dörner, S; Fricke, J; Baldeweg, F; Trottmann, F; Komor, A; Meyer, F; Hertweck, C; Hoffmeister, D. Simultaneous production of psilocybin and a cocktail of β-carboline monoamine oxidase inhibitors in “magic” mushrooms. Chem. Eur. J., 13 Jan 2020, 26 (3), 729–734. 1.2 MB. https://doi.org/10.1002/chem.201904363 #1 LC,MS,UV,other
Lenz, C; Wick, J; Braga, D; García-Altares, M; Lackner, G; Hertweck, C; Gressler, M; Hoffmeister, D. Injury-triggered blueing reactions of Psilocybe “magic” mushrooms. Angew. Chem. Int., 1 Jan 2020, 59 (4), 1450–1454. 5.1 MB. https://doi.org/10.1002/anie.201910175 #1 LC,MS,NMR,IR,UV,other
Jensen, N; Gartz, J; Laatsch, H. Aeruginascin, a trimethylammonium analogue of psilocybin from the hallucinogenic mushroom Inocybe aeruginascens. Planta Med., 1 Apr 2006, 72 (07), 665–666. 395 kB. https://doi.org/10.1055/s-2006-931576 #3 MS,NMR,UV,TLC
Fenderson5555. Psilocin/psilocybin via the Larock indole synthesis. , 5 May 2020. . Fenderson5555 13.7 MB. #Psilocybin
Nichols, DE. Psilocybin: From ancient magic to modern medicine. J. Antibiot., 1 Oct 2020, 73 (10), 679-686. 774 kB. https://doi.org/10.1038/s41429-020-0311-8 #Psilocybin
Sherwood, AM; Meisenheimer, P; Tarpley, G; Kargbo, RB. An improved, practical, and scalable five-step synthesis of psilocybin. Synthesis, 1 Mar 2020, 52 (05), 688–694. 853 kB. https://doi.org/10.1055/s-0039-1691565 #1 MS,NMR,IR
Kargbo, RB; Sherwood, A; Walker, A; Cozzi, NV; Dagger, RE; Sable, J; O’Hern, K; Kaylo, K; Patterson, T; Tarpley, G; Meisenheimer, P. Direct phosphorylation of psilocin enables optimized cGMP kilogram-scale manufacture of psilocybin. ACS Omega, 14 Jul 2020, 5 (27), 16959–16966. 994 kB. https://doi.org/10.1021/acsomega.0c02387 #6
Chadeayne, AR; Pham, DNK; Reid, BG; Golen, JA; Manke, DR. Active metabolite of aeruginascin (4-hydroxy-N,N,N-trimethyltryptamine): Synthesis, structure, and serotonergic binding affinity. ACS Omega, 14 Jul 2020, 5 (27), 16940–16943. 2.8 MB. https://doi.org/10.1021/acsomega.0c02208 #psilocybin NMR,other
Sherwood, AM; Claveau, R; Lancelotta, R; Kaylo, KW; Lenoch, K. Synthesis and characterization of 5-MeO-DMT succinate for clinical use. ACS Omega, 15 Dec 2020, 5 (49), 32067–32075. 3.2 MB. https://doi.org/10.1021/acsomega.0c05099 #1 MS,NMR
Greenan, C; Arlin, J; Lorimer, K; Kaylo, K; Kargbo, R; Tarpley, WG; Sherwood, A. Preparation and characterization of novel crystalline solvates and polymorphs of psilocybin and identification of solid forms suitable for clinical development. ResearchGate, 1 Feb 2020. 713 kB. https://doi.org/10.13140/RG.2.2.32357.14560 #Psilocybin LC,NMR,other
Gerber, K; Flores, IG; Ruiz, AC; Ali, I; Ginsberg, NL; Schenberg, EE. Ethical concerns about psilocybin intellectual property. ACS Pharmacol. Transl. Sci., 9 Apr 2021, 4 (2), 573-577. 4.8 MB. https://doi.org/10.1021/acsptsci.0c00171
Lenz, C; Sherwood, A; Kargbo, R; Hoffmeister, D. Taking different roads: L‐Tryptophan as the origin of Psilocybe natural products. ChemPlusChem, 1 Jan 2021, 86 (1), 28–35. 793 kB. https://doi.org/10.1002/cplu.202000581 #psilocybin
Folen, VA. X-Ray powder diffraction data for some drugs, excipients, and adulterants in illicit samples. J. Forensic Sci., 1 Apr 1975, 20 (2), 348–372. 502 kB. https://doi.org/10.1520/JFS10282J #62 other
Sherwood, AM; Halberstadt, AL; Klein, AK; McCorvy, JD; Kaylo, KW; Kargbo, RB; Meisenheimer, P. Synthesis and biological evaluation of tryptamines found in hallucinogenic mushrooms: norbaeocystin, baeocystin, norpsilocin, and aeruginascin. J. Nat. Prod., 28 Feb 2020, 83 (2), 461–467. 3.8 MB. https://doi.org/10.1021/acs.jnatprod.9b01061 #1 LC,MS,NMR
Dimitroff, D. Psilocybin mushroom cultivation. JCLIC, 1 Mar 2004, 14 (2), 11-13. 426 kB.
Nichols, DE; Walter, H. The history of psychedelics in psychiatry. Pharmacopsychiatry, 1 Jul 2021, 54 (04), 151–166. 305 kB. https://doi.org/10.1055/a-1310-3990 #Psilocybin
Cumming, P; Scheidegger, M; Dornbierer, D; Palner, M; Quednow, BB; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 1 Jan 2021, 26 (9), 2451. 3.5 MB. https://doi.org/10.3390/molecules26092451 #2
Mesley, RJ; Evans, WH. Infrared identification of some hallucinogenic derivatives of tryptamine and amphetamine. J. Pharm. Pharmacol., 1 May 1970, 22 (5), 321–332. 775 kB. https://doi.org/10.1111/j.2042-7158.1970.tb08533.x #Psilocybin IR
Sottolano, SM; Lurie, IS. The quantitation of psilocybin in hallucinogenic mushrooms using high performance liquid chromatography. J. Forensic Sci., 1 Oct 1983, 28 (4), 929–935. 327 kB. https://doi.org/10.1520/JFS11601J #Psilocybin LC
Grieshaber, AF; Moore, KA; Levine, B. The detection of psilocin in human urine. J. Forensic Sci., 1 May 2001, 46 (3), 627–630. 286 kB. https://doi.org/10.1520/JFS15014J #Psilocybin GC,MS
Lenz, C; Dörner, S; Sherwood, A; Hoffmeister, D. Structure elucidation and spectroscopic analysis of chromophores produced by oxidative psilocin dimerization. Chem. Eur. J., 19 Aug 2021, 27 (47), 12166–12171. 10.7 MB. https://doi.org/10.1002/chem.202101382 #2 LC,MS,NMR,UV
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #4.25
Lenz, C; Dörner, S; Trottmann, F; Hertweck, C; Sherwood, A; Hoffmeister, D. Assessment of bioactivity‐modulating pseudo‐ring formation in psilocin and related tryptamines. ChemBioChem, 28 Apr 2022, 23 (13), e202200183. 3.2 MB. https://doi.org/10.1002/cbic.202200183 #1 NMR
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #Psilocybin
Gotvaldová, K; Borovička, J; Hájková, K; Cihlářová, P; Rockefeller, A; Kuchař, M. Extensive collection of psychotropic mushrooms with determination of their tryptamine alkaloids. Int. J. Mol. Sci., 15 Nov 2022, 23 (22), 14068. 3.0 MB. https://doi.org/10.3390/ijms232214068 #Psilocybin other
Glatfelter, GC; Pottie, E; Partilla, JS; Sherwood, AM; Kaylo, K; Pham, DNK; Naeem, M; Sammeta, VR; DeBoer, S; Golen, JA; Hulley, EB; Stove, CP; Chadeayne, AR; Manke, DR; Baumann, MH. Structure–activity relationships for psilocybin, baeocystin, aeruginascin, and related analogues to produce pharmacological effects in mice. ACS Pharmacol. Transl. Sci., 11 Nov 2022, 5 (11), 1181–1196. 4.8 MB. https://doi.org/10.1021/acsptsci.2c00177 #Psilocybin MS,NMR,other
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #Psilocybin
Mckenna, DJ; Towers, GHN; Abbott, FS. Monoamine oxidase inhibitors in South American hallucinogenic plants part 2: Constituents of orally-active Myristicaceous hallucinogens. J. Ethnopharmacol., 1 Nov 1984, 12 (2), 179–211. 2.5 MB. https://doi.org/10.1016/0378-8741(84)90048-5 #Psilocybin GC,MS,UV
Gartz, J. Biotransformation of tryptamine derivatives in mycelia cultures of Psilocybe. J. Basic. Microbiol., 1 Jan 1989, 29 (6), 347–352. 357 kB. https://doi.org/10.1002/jobm.3620290608 #Psilocybin
Shulgin, AT. Psilocybe mushroom extractions. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 5 Mar 2003.
Nichols, DE. Hallucinogens. Pharmacol. Ther., 1 Feb 2004, 101 (2), 131–181. 855 kB. https://doi.org/10.1016/j.pharmthera.2003.11.002
Shulgin, AT. Drug testing for mushrooms. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 1 Dec 2004.