- Psilocin
- 4-Hydroxy-N,N-dimethyltryptamine
- CX-59
- 3-[2-(Dimethylamino)ethyl]-4-indolol
- N,N-Dimethyl-4-hydroxytryptamine
- 4-HO-DMT
- 4-Indolol, 3-[2-(dimethylamino)ethyl]
- PAL-153
- PSOH
- Tryptamine, 4-hydroxy-N,N-dimethyl
Repke, DB; Ferguson, WJ; Bates, DK. Psilocin analogs II. Synthesis of 3-[2-(dialkylamino)ethyl]-, 3-[2-(N-methyl-N-alkylamino)ethyl]-, and 3-[2-(cycloalkylamino)ethyl]indol-4-ols. J. Heterocycl. Chem., 1 Jan 1981, 18 (1), 175–179. 368 kB. https://doi.org/10.1002/jhet.5570180131 #12a
Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #Psilocin
Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. https://doi.org/10.1016/j.bmc.2008.02.033 #11
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Meyers-Riggs, B. 4-Hydroxy tryptamines. countyourculture, countyourculture: rational exploration of the underground, 7 Jul 2012.
Meyers-Riggs, B. Biosynthesis of 4-substituted tryptamine derivatives. countyourculture, countyourculture: rational exploration of the underground, 17 Feb 2012.
Gessner, PK; Godse, DD; Krull, AH; McMullan, JM. Structure-activity relationships among 5-methoxy-N:N-dimethyltryptamine, 4-hydroxy-N:N-dimethyltryptamine (psilocin) and other substituted tryptamines. Life Sci., 1 Mar 1968, 7 (5), 267–277. 362 kB. https://doi.org/10.1016/0024-3205(68)90200-2 #4HO-DMT
Wurst, M; Kysilka, R; Flieger, M. Psychoactive tryptamines from Basidiomycetes. Folia Microbiol., 1 Feb 2002, 47 (1), 3–27. 3.1 MB. https://doi.org/10.1007/BF02818560
Peroutka, SJ; McCarthy, BG; Guan, X. 5-Benzyloxytryptamine: a relatively selective 5-hydroxytryptamine1D/1B agent. Life Sci., 1 Jan 1991, 49 (6), 409–418. 556 kB. https://doi.org/10.1016/0024-3205(91)90582-V
Gross, ST. Detecting psychoactive drugs in the developmental stages of mushrooms. J. Forensic Sci., 1 May 2000, 45 (3), 527–537. 6.2 MB. https://doi.org/10.1520/JFS14725J
Gross, ST. Psychotropic drugs in developmental mushrooms: A case study review. J. Forensic Sci., 1 Nov 2002, 47 (6), 1298-1302. 369 kB. https://doi.org/10.1520/JFS15564J
Glennon, RA; Gessner, PK. Serotonin receptor binding affinities of tryptamine analogues. J. Med. Chem., 1 Jan 1979, 22 (4), pp 428–432. 731 kB. https://doi.org/10.1021/jm00190a014 #7
Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001
Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255
McKenna, DJ. Monoamine oxidsase inhibitors in Amazonian hallucinogenic plants: Ethnobotanical, phytochemical, and pharmacological investigations. Ph. D. Thesis, University of British Columbia, BC, Canada, 26 Apr 1984. 12.2 MB. LC,MS,UV,TLC
Sard, H; Kumaran, G; Morency, C; Roth, BL; Toth, BA; Hec, P; Shuster, L. SAR of psilocybin analogs: Discovery of a selective 5-HT2C agonist. Bioorg. Med. Chem. Lett., 1 Jan 2005, 15 (20), 4555–4599. 134 kB. https://doi.org/10.1016/j.bmcl.2005.06.104 #2
Meyers-Riggs, B. Grid biosynthesis of psilocybin. countyourculture, countyourculture: rational exploration of the underground, 5 Dec 2011.
Gartz, J. Extraction and analysis of indole derivatives from fungal biomass. J. Basic. Microbiol., 1 Jan 1994, 34 (1), 17–22. 614 kB. https://doi.org/10.1002/jobm.3620340104
Hofmann, A; Heim, R; Brack, A; Kobel, H; Frey, A; Ott, H; Petrzilka, T; Troxler, F. Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv. Chim. Acta, 1 Jan 1959, 42 (5), 1557–1572. 1.1 MB. https://doi.org/10.1002/hlca.19590420518 #Psilocin IR
Troxler, F; Seemann, F; Hofmann, A. Abwandlungsprodukte von Psilocybin und Psilocin. 2. Mitteilung über synthetische Indolverbindungen. Helv. Chim. Acta, 1 Jan 1959, 42 (6), 2073–2103. 1.6 MB. https://doi.org/10.1002/hlca.19590420638 #II UV
Chilton, WS; Bigwood, J; Jensen, RE. Psilocin, Bufotenine and serotonin: Historical and biosynthetic observations. J. Psychoactive Drugs, 1 Jan 1979, 11 (1–2), 61–69. 4.8 MB. https://doi.org/10.1080/02791072.1979.10472093
McKenna, DJ; Repke, DB; Lo, L; Peroutka, SJ. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 1 Mar 1990, 29 (3), 191–198. 679 kB. https://doi.org/10.1016/0028-3908(90)90001-8
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Migliaccio, GP; Shieh, TN; Byrn, SR; Hathaway, BA; Nichols, DE. Comparison of solution conformational preferences for the hallucinogens bufotenin and psilocin using 360-MHz proton NMR spectroscopy. J. Med. Chem., 1 Feb 1981, 24 (2), 206–209. 564 kB. https://doi.org/10.1021/jm00134a016 NMR
Morris, H. Blood Spore: Of Murder and Mushrooms. Harper’s Magazine, 1 Jul 2013, 41–56. 13.8 MB.
Sarwar, M; McDonald, JL. A rapid extraction and GC/MS methodology for the identification of psilocyn in mushroom/chocolate concoctions. Microgram J., 1 Jul 2003, 1 (3–4), 177–183. 211 kB.
Rodriguez-Cruz, SE. Analysis and characterization of psilocybin and psilocin using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) with collision-induced-dissociation (CID) and source-induced-dissociation (SID). Microgram J., 1 Jul 2005, 3 (3–4), 175–182. 560 kB.
Wiseman-Distler, MH; Sourkes, TL. The effect of 4-hydroxyindoles on the metabolism of 5-hydroxytryptamine (serotonin). Ann. N. Y. Acad. Sci., 1 Jan 1962, 96 (1), 142–151. 458 kB. https://doi.org/10.1111/j.1749-6632.1962.tb50109.x #Psilocin
Pellegrini, M; Rotolo, MC; Marchei, E; Pacifici, R; Saggio, F; Pichini, S. Magic truffles or philosopher’s stones: a legal way to sell psilocybin? Drug Test. Anal., 1 Mar 2013, 5 (3), 182–185. 219 kB. https://doi.org/10.1002/dta.1400
Blough, BE; Landavazo, A; Decker, AM; Partilla, JS; Baumann, MH; Rothman, RB. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 1 Oct 2014, 231 (21), 4135-4144. 298 kB. https://doi.org/10.1007/s00213-014-3557-7
Heim, R; Genest, K; Hughes, DW; Belec, G. Botanical and chemical characterisation of a forensic mushroom specimen of the genus psilocybe. J. Forensic Sci. Soc., 1 Jul 1966, 6 (4), 192–201. 2.1 MB. https://doi.org/10.1016/S0015-7368(66)70336-3 #Psilocin UV,TLC
Meyer, MR; Caspar, A; Brandt, SD; Maurer, HH. A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches. Anal. Bioanal. Chem., 1 Jan 2014, 406 (1), 225–237. 457 kB. https://doi.org/10.1007/s00216-013-7425-9 #4-HO-DMT LC,MS
Fricke, J; Blei, F; Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int., 20 Aug 2017, 56 (40), 12352-12355. 1.8 MB. https://doi.org/10.1002/anie.201705489
Brandt, SD; Martins, CPB. Analytical methods for psychoactive N,N-dialkylated tryptamines. Trends Anal. Chem., 1 Sep 2010, 29 (8), 858–869. 446 kB. https://doi.org/10.1016/j.trac.2010.04.008 #17
Fricke, J; Sherwood, A; Kargbo, R; Orry, A; Blei, F; Naschberger, A; Rupp, B; Hoffmeister, D. Enzymatic route toward 6‐methylated baeocystin and psilocybin. ChemBioChem, 31 May 2019, 20 (22), 2824-2829. 3.2 MB. https://doi.org/10.1002/cbic.201900358 #4 NMR
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #59
Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9 TLC
Anastos, N; Barnett, N; Lewis, S; Gathergood, N; Scammells, P; Sims, D. Determination of psilocin and psilocybin using flow injection analysis with acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection respectively. Talanta, 15 Aug 2005, 67 (2), 354-359. 111 kB. https://doi.org/10.1016/j.talanta.2004.11.038 #5
Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Anal., 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #3
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 1 Aug 2016, 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001
López-Giménez, JF; González-Maeso, J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 45-73. 712 kB. https://doi.org/10.1007/7854_2017_478
McKenna, D; Riba, J. New world tryptamine hallucinogens and the neuroscience of ayahuasca. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2016; pp 283-311. 749 kB. https://doi.org/10.1007/7854_2016_472
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Martin, R. Nachweis und Bestimmung halluzinogener Wirkstoffe und ihrer Metaboliten in Körperflüssigkeiten und Haaren. Toxichem Krimtech, 1 Jan 2015, 82 (2), 123–127. 448 kB.
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42
Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #42 LC,MS,NMR,IR
Beug, MW; Bigwood, J. Quantitative analysis of psilocybin and psilocin and Psilocybe baecystis (Singer and Smith) by high-performance liquid chromatography and by thin-layer chromatography. J. Chromatogr. A, 27 Mar 1981, 207 (3), 379-385. 514 kB. https://doi.org/10.1016/S0021-9673(00)88741-5 #II LC,TLC
Tylš, F; Páleníček, T; Horáček, J. Psilocybin – Summary of knowledge and new perspectives. Eur. Neuropsychopharmacol., 1 Mar 2014, 24 (3), 342–356. 710 kB. https://doi.org/10.1016/j.euroneuro.2013.12.006
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #29e
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #4f
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #XXX
Nichols, DE. Potential psychotomimetics: Bromomethoxyamphetamines and structural congeners of lysergic acid. Ph. D. Thesis, University of Iowa, Iowa City, IA, 1 May 1973. 13.0 MB. #3 NMR,IR,other
Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, . 3.9 MB. #Psilocin
Kamata, T; Nishikawa, M; Katagi, M; Tsuchihashi, H. Liquid chromatography-mass spectrometric and liquid chromatography-tandem mass spectrometric determination of hallucinogenic indoles psilocin and psilocybin in “Magic mushroom” samples. J. Forensic Sci., 5 Jan 2005, 50 (2), 1–5. 155 kB. https://doi.org/10.1520/JFS2004276 #PC LC,MS
Grieshaber, AF; Moore, KA; Levine, B. The detection of psilocin in human urine. J. Forensic Sci., 1 May 2001, 46 (3), 627–630. 286 kB. https://doi.org/10.1520/JFS15014J #Psilocin GC,MS
Rothman, RB; Partilla, JS; Baumann, MH; Lightfoot-Siordia, C; Blough, BE. Studies of the biogenic amine transporters. 14. Identification of low-efficacy “partial” substrates for the biogenic amine transporters. J. Pharmacol. Exp. Ther., 1 Apr 2012, 341 (1), 251–262. 2.2 MB. https://doi.org/10.1124/jpet.111.188946 #PAL-153
Barry, TL; Petzinger, G; Zito, SW. GC/MS comparison of the West Indian aphrodisiac “Love Stone” to the Chinese medication “Chan Su”: Bufotenine and related bufadienolides. J. Forensic Sci., 1 Nov 1996, 41 (6), 1068–1073. 411 kB. https://doi.org/10.1520/JFS14052J #Psilocin MS
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #Psilocin
Geiger, HA; Wurst, MG; Daniels, RN. DARK classics in chemical neuroscience: Psilocybin. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2438–2447. 580 kB. https://doi.org/10.1021/acschemneuro.8b00186 #2
Nichols, DE; Frescas, SP. Improvements to the synthesis of psilocybin and a facile method for preparing the O-acetyl prodrug of psilocin. Synthesis, 1 Jun 1999, 1999, 935–938. 1.5 MB. https://doi.org/10.1055/s-1999-3490 #5 NMR
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S2 Tryptamines Psilocin
Glennon, RA; Young, R; Rosecrans, JA; Kallman, MJ. Hallucinogenic agents as discriminative stimuli: A correlation with serotonin receptor affinities. Psychopharmacology, 1 May 1980, 68 (2), 155–158. 395 kB. https://doi.org/10.1007/BF00432133 #4-OH DMT
Fricke, J; Lenz, C; Wick, J; Blei, F; Hoffmeister, D. Production options for psilocybin: Making of the magic. Chem. Eur. J., 18 Jan 2019, 25 (4), 897–903. 1.8 MB. https://doi.org/10.1002/chem.201802758 #2
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #13 In German. MS,NMR,IR
Blei, F; Baldeweg, F; Fricke, J; Hoffmeister, D. Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions. Chem. Eur. J., 17 Jul 2018, 24 (40), 10028–10031. 969 kB. https://doi.org/10.1002/chem.201801047 #3 LC,MS,NMR
Yasuoka, T; Muroi, H; Okazaki, R; Matsumoto, Y; Terauchi, Y; Sasatani, T. Analysis of tryptamine group compounds. JCCL, 1 Jan 2003, (43), 63–69. 151 kB. #Psilocin Japanese, English abstract LC,MS,NMR,IR,UV
Kang, S; Johnson, CL; Green, JP. Theoretical studies on the conformations of psilocin and mescaline. Mol. Pharmacol., 1 Sep 1973, 9 (5), 640–648. 6.9 MB. #Psilocin other
Casale, JF. An aqueous-organic extraction method for the isolation and identification of psilocin from hallucinogenic mushrooms. J. Forensic Sci., 1 Jan 1985, 30 (1), 247–250. 288 kB. https://doi.org/10.1520/JFS10989J #Psilocin MS,IR
Poulie, CBM; Jensen, AA; Halberstadt, AL; Kristensen, JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem. Neurosci., 2 Dec 2020, 11 (23), 3860-3869. 860 kB. https://doi.org/10.1021/acschemneuro.9b00528 #Psilocin
Lenz, C; Wick, J; Hoffmeister, D. Identification of ω-N-methyl-4-hydroxytryptamine (Norpsilocin) as a Psilocybe natural product. J. Nat. Prod., 27 Oct 2017, 80 (10), 2835–2838. 1.1 MB. https://doi.org/10.1021/acs.jnatprod.7b00407 #Psilocin LC,MS,NMR
Blair, JB; Kurrasch-Orbaugh, D; Marona-Lewicka, D; Cumbay, MG; Watts, VJ; Barker, EL; Nichols, DE. Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J. Med. Chem., 1 Nov 2000, 43 (24), 4701–4710. 494 kB. https://doi.org/10.1021/jm000339w #2b MS,NMR
Milne, N; Thomsen, P; Knudsen, NM; Rubaszka, P; Kristensen, M; Borodina, I. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab. Eng., 1 Jul 2020, 60, 25–36. 2.4 MB. https://doi.org/10.1016/j.ymben.2019.12.007 #Psilocin LC,MS
Blei, F; Dörner, S; Fricke, J; Baldeweg, F; Trottmann, F; Komor, A; Meyer, F; Hertweck, C; Hoffmeister, D. Simultaneous production of psilocybin and a cocktail of β-carboline monoamine oxidase inhibitors in “magic” mushrooms. Chem. Eur. J., 13 Jan 2020, 26 (3), 729–734. 1.2 MB. https://doi.org/10.1002/chem.201904363 #2 LC,MS,UV,other
Lenz, C; Wick, J; Braga, D; García-Altares, M; Lackner, G; Hertweck, C; Gressler, M; Hoffmeister, D. Injury-triggered blueing reactions of Psilocybe “magic” mushrooms. Angew. Chem. Int., 1 Jan 2020, 59 (4), 1450–1454. 5.1 MB. https://doi.org/10.1002/anie.201910175 #2 LC,MS,NMR,IR,UV,other
Fenderson5555. Psilocin/psilocybin via the Larock indole synthesis. , 5 May 2020. . Fenderson5555 13.7 MB. #Psilocin
Nichols, DE. Psilocybin: From ancient magic to modern medicine. J. Antibiot., 1 Oct 2020, 73 (10), 679-686. 774 kB. https://doi.org/10.1038/s41429-020-0311-8 #Psilocin
Sherwood, AM; Meisenheimer, P; Tarpley, G; Kargbo, RB. An improved, practical, and scalable five-step synthesis of psilocybin. Synthesis, 1 Mar 2020, 52 (05), 688–694. 853 kB. https://doi.org/10.1055/s-0039-1691565 #7 MS,NMR,IR
Kargbo, RB; Sherwood, A; Walker, A; Cozzi, NV; Dagger, RE; Sable, J; O’Hern, K; Kaylo, K; Patterson, T; Tarpley, G; Meisenheimer, P. Direct phosphorylation of psilocin enables optimized cGMP kilogram-scale manufacture of psilocybin. ACS Omega, 14 Jul 2020, 5 (27), 16959–16966. 994 kB. https://doi.org/10.1021/acsomega.0c02387 #4
Flanagan, TW; Billac, GB; Landry, AN; Sebastian, MN; Cormier, SA; Nichols, CD. Structure–activity relationship analysis of psychedelics in a rat model of asthma reveals the anti-inflammatory pharmacophore. ACS Pharmacol. Transl. Sci., 9 Apr 2021, 4 (2), 488-502. 13.3 MB. https://doi.org/10.1021/acsptsci.0c00063 #psilocin
Chadeayne, AR; Pham, DNK; Reid, BG; Golen, JA; Manke, DR. Active metabolite of aeruginascin (4-hydroxy-N,N,N-trimethyltryptamine): Synthesis, structure, and serotonergic binding affinity. ACS Omega, 14 Jul 2020, 5 (27), 16940–16943. 2.8 MB. https://doi.org/10.1021/acsomega.0c02208 #psilocin NMR,other
Klein, AK; Chatha, M; Laskowski, LJ; Anderson, EI; Brandt, SD; Chapman, SJ; McCorvy, JD; Halberstadt, AL. Investigation of the structure–activity relationships of psilocybin analogues. ACS Pharmacol. Transl. Sci., 9 Apr 2021, 4 (2), 533-542. 1.9 MB. https://doi.org/10.1021/acsptsci.0c00176 #psilocin (4-HO-DMT)
Lenz, C; Sherwood, A; Kargbo, R; Hoffmeister, D. Taking different roads: L‐Tryptophan as the origin of Psilocybe natural products. ChemPlusChem, 1 Jan 2021, 86 (1), 28–35. 793 kB. https://doi.org/10.1002/cplu.202000581 #psilocin
Greenan, C; Arlin, J; Lorimer, K; Kaylo, K; Kargbo, R; Tarpley, WG; Sherwood, A. Preparation and characterization of novel crystalline solvates and polymorphs of psilocybin and identification of solid forms suitable for clinical development. ResearchGate, 1 Feb 2020. 713 kB. https://doi.org/10.13140/RG.2.2.32357.14560 #Psilocin LC,NMR,other
Sherwood, AM; Halberstadt, AL; Klein, AK; McCorvy, JD; Kaylo, KW; Kargbo, RB; Meisenheimer, P. Synthesis and biological evaluation of tryptamines found in hallucinogenic mushrooms: norbaeocystin, baeocystin, norpsilocin, and aeruginascin. J. Nat. Prod., 28 Feb 2020, 83 (2), 461–467. 3.8 MB. https://doi.org/10.1021/acs.jnatprod.9b01061 #2 LC,MS,NMR
Kozlowska, U; Nichols, C; Wiatr, K; Figiel, M. From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. J. Neurochem., 13 Sep 2021, 95 (6), 1575-1584. 35.4 MB. https://doi.org/10.1111/jnc.15509 #Psilocin
Cumming, P; Scheidegger, M; Dornbierer, D; Palner, M; Quednow, BB; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 1 Jan 2021, 26 (9), 2451. 3.5 MB. https://doi.org/10.3390/molecules26092451 #8
Sottolano, SM; Lurie, IS. The quantitation of psilocybin in hallucinogenic mushrooms using high performance liquid chromatography. J. Forensic Sci., 1 Oct 1983, 28 (4), 929–935. 327 kB. https://doi.org/10.1520/JFS11601J #Psilocin LC
Angenoorth, TJF; Stankovic, S; Niello, M; Holy, M; Brandt, SD; Sitte, HH; Maier, J. Interaction profiles of central nervous system active drugs at human organic cation transporters 1–3 and human plasma membrane monoamine transporter. Int. J. Mol. Sci., 30 Nov 2021, 22 (23), 12995. 5.1 MB. https://doi.org/10.3390/ijms222312995 #Psilocin
Lenz, C; Dörner, S; Sherwood, A; Hoffmeister, D. Structure elucidation and spectroscopic analysis of chromophores produced by oxidative psilocin dimerization. Chem. Eur. J., 19 Aug 2021, 27 (47), 12166–12171. 10.7 MB. https://doi.org/10.1002/chem.202101382 #1 LC,MS,NMR,UV
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #4.24
Lenz, C; Dörner, S; Trottmann, F; Hertweck, C; Sherwood, A; Hoffmeister, D. Assessment of bioactivity‐modulating pseudo‐ring formation in psilocin and related tryptamines. ChemBioChem, 28 Apr 2022, 23 (13), e202200183. 3.2 MB. https://doi.org/10.1002/cbic.202200183 #2 NMR
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #Psilocin
Shulgin, AT. Psychotomimetic agents related to the catecholamines. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 14–19. 782 kB. https://doi.org/10.1080/02791072.1969.10524409 #VIId
Gotvaldová, K; Borovička, J; Hájková, K; Cihlářová, P; Rockefeller, A; Kuchař, M. Extensive collection of psychotropic mushrooms with determination of their tryptamine alkaloids. IJMS, 15 Nov 2022, 23 (22), 14068. 3.0 MB. https://doi.org/10.3390/ijms232214068 #Psilocin other
Glatfelter, GC; Pottie, E; Partilla, JS; Sherwood, AM; Kaylo, K; Pham, DNK; Naeem, M; Sammeta, VR; DeBoer, S; Golen, JA; Hulley, EB; Stove, CP; Chadeayne, AR; Manke, DR; Baumann, MH. Structure–activity relationships for psilocybin, baeocystin, aeruginascin, and related analogues to produce pharmacological effects in mice. ACS Pharmacol. Transl. Sci., 11 Nov 2022, 5 (11), 1181–1196. 4.8 MB. https://doi.org/10.1021/acsptsci.2c00177 #Psilocin MS,NMR,other
Agurell, S; Nilsson, JLG. Biosynthesis of psilocybin. Part II. Incorporation of labelled tryptamine derivatives. Acta Chem. Scand., 1 Jan 1968, 22 (4), 1210–1218. 805 kB. https://doi.org/10.3891/acta.chem.scand.22-1210 #IV
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #Psilocin
Glennon, RA; Rosecrans, JA. Indolealkylamine and phenalkylamine hallucinogens: A brief overview. Neurosci. Biobehav. Rev., 1 Jan 1982, 6 (4), 489–497. 895 kB. https://doi.org/10.1016/0149-7634(82)90030-6 #3b
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #129
McKenna, DJ; Towers, HHN. Biochemistry and pharmacology of tryptamines and beta-carbolines: A minireview. J. Psychoactive Drugs, 1 Jan 1984, 16 (4), 347–358. 10.8 MB. https://doi.org/10.1080/02791072.1984.10472305 #Psilocin
Mckenna, DJ; Towers, GHN; Abbott, FS. Monoamine oxidase inhibitors in South American hallucinogenic plants part 2: Constituents of orally-active Myristicaceous hallucinogens. J. Ethnopharmacol., 1 Nov 1984, 12 (2), 179–211. 2.5 MB. https://doi.org/10.1016/0378-8741(84)90048-5 #Psilocin GC,MS,UV