- 4-MeA
- 4-Methylamphetamine
- Aptrol
- 4-MA
- 4-Me-AMP
- PAL-313
- PMeA
- pTAP
Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10), 1100–1111. 1.2 MB. https://doi.org/10.1021/jm00256a016 #17 other
Rothman, RB; Blough, BE; Baumann, MH. Dual dopamine-5-HT releasers: potential treatment agents for cocaine addiction. Trends Pharmacol. Sci., 1 Dec 2006, 27 (12), 612–618. 515 kB. https://doi.org/10.1016/j.tips.2006.10.006 #p-Methylamphetamine
Rothman, RB; Blough, BE; Baumann, MH. Dual dopamine/serotonin releasers as potential medications for stimulant and alcohol addictions. AAPS J., 1 Mar 2007, 9 (1), E1–E10. 999 kB. https://doi.org/10.1208/aapsj0901001
Higgs, RA; Glennon, RA. Stimulus properties of ring-methyl amphetamine analogs. Pharmacol. Biochem. Behav., 1 Dec 1990, 37 (4), 835–837. 238 kB. https://doi.org/10.1016/0091-3057(90)90571-X
Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #5 NMR
Ögren, S; Ross, SB. Substituted amphetamine derivatives. II. Behavioural effects in mice related to monoaminergic neurones. Acta Pharmacol. Toxicol., 1 Oct 1977, 41 (4), 353–368. 824 kB. https://doi.org/10.1111/j.1600-0773.1977.tb02674.x #4-Methylamphetamine
EMCDDA. Report on the risk assessment of 4-methylamphetamine (4-MA), European Monitoring Centre for Drugs and Drug Addiction, Lisbon, . 786 kB. #4-MA MS
Davis, S; Blakey, K; Rands-Trevor, K. GC-MS and GC-IRD analysis of 2-, 3- and 4-methylmethamphetamine and 2-, 3- and 4-methylamphetamine. Forensic Sci. Int., 10 Jul 2012, 220 (1–3), 67–73. 1.2 MB. https://doi.org/10.1016/j.forsciint.2012.01.028 #6 GC,MS,IR
Baumann, MH; Clark, RD; Woolverton, WL; Wee, S; Blough, BE; Rothman, RB. In vivo effects of amphetamine analogs reveal evidence for serotonergic inhibition of mesolimbic dopamine transmission in the rat. J. Pharmacol. Exp. Ther., 1 Apr 2011, 337 (1), 218–225. 380 kB. https://doi.org/10.1124/jpet.110.176271
Bailey, K; Legault, D. Analysis of the 13C-NMR spectra of mono- and dimethylamphetamines. Anal. Chim. Acta, 1 Jan 1981, 123, 75–82. 654 kB. https://doi.org/10.1016/S0003-2670(01)83160-3 #4 NMR
Benington, F; Morin, RD; Clark, LC. Behavioral and neuropharmacological actions of N-aralkylhydroxylamines and their O-methyl ethers. J. Med. Chem., 1 Jan 1965, 8 (1), 100–104. 634 kB. https://doi.org/10.1021/jm00325a020 #16
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #64 Rhodium.
Power, JD; Clarke, K; McDermott, SD; McGlynn, P; Barry, M; White, C; O’Brien, J; Kavanagh, P. The identification of 4-methylamphetamine and its synthesis by-products in forensic samples. Forensic Sci. Int., 10 May 2013, 228 (1–3), 115–131. 1.9 MB. https://doi.org/10.1016/j.forsciint.2013.02.039 #2 GC,MS,NMR,IR
Bailey, K; Beckstead, HD; Legault, D; Verner, D. Identification of 2-, 3-, and 4-methoxyamphetamines and 2-, 3-, and 4-methylamphetamines. J. Assoc. Off. Anal. Chem., , 57 (5), 1134–1143. 2.6 MB. #IIIB GC,LC,MS,NMR,IR,UV,TLC
Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027
Shannon, M; Battaglia, G; Glennon, RA; Titeler, M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur. J. Pharmacol., 15 Jun 1984, 102 (1), 23–29. 461 kB. https://doi.org/10.1016/0014-2999(84)90333-9 #4-Me PIA
Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 1 Jan 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9
Hyperlab. Hyperlab new compounds. 29 Sep 2014. 232 kB. Note: Contains links to hyperlab.info that require elevated access/karma to follow.
Welter-Luedeke, J; Maurer, HH. New psychoactive substances: chemistry, pharmacology, metabolism, and detectability of amphetamine derivatives with modified ring systems. Ther. Drug Monit., 1 Feb 2016, 38 (1), 4–11. 216 kB. https://doi.org/10.1097/FTD.0000000000000240
Segawa, H; Iwata, YT; Yamamuro, T; Kuwayama, K; Tsujikawa, K; Kanamori, T; Inoue, H. Differentiation of ring-substituted regioisomers of amphetamine and methamphetamine by supercritical fluid chromatography: Differentiation of ring-substituted regioisomers by supercritical fluid chromatography. Drug Test. Anal., 1 Mar 2017, 9 (3), 389-398. 1.3 MB. https://doi.org/10.1002/dta.2040
Luethi, D; Kolaczynska, KE; Docci, L; Krähenbühl, S; Hoener, MC; Liechti, ME. Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology, 15 May 2018, 134 (A), 4-12. 1.8 MB. https://doi.org/10.1016/j.neuropharm.2017.07.026 #4-MA
EMCDDA. New drugs in Europe, 2011, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Apr 2012. 401 kB.
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #3.43
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Coopman, V; Delbeke, P; Van Ingelgem, A; De Leeuw, M; Cordonnier, J. Spectroscopic characterization of 4-methylamphetamine: formaldehyde adduct formation hindered the identification by mass spectrometry. Ann. Toxicol. Anal., 29 Jan 2013, 24 (4), 159-163. 331 kB. https://doi.org/10.1051/ata/2012021 #4-Methylamphetamine GC,MS
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #4
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Simmler, LD; Liechti, ME. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 143-164. 298 kB. https://doi.org/10.1007/164_2018_113
Wee, S; Anderson, KG; Rothman, RB; Bough, BE; Woolverton, WL. Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J. Pharmacol. Exp. Ther., 1 May 2005, 313 (2), 848–254. 171 kB. https://doi.org/10.1124/jpet.104.080101 #p-methylamphetamine (PAL 313)
EMCDDA. New drugs in Europe, 2009, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2010. 321 kB. #23
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S1 Phenethylamines 4-MA
Kraemer, M; Boehmer, A; Madea, B; Maas, A. Death cases involving certain new psychoactive substances: A review of the literature. Forensic Sci. Int., 1 May 2019, 298, 186–267. 6.7 MB. https://doi.org/10.1016/j.forsciint.2019.02.021 #4-MA
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #PP-015
Okamoto, K; Akimoto, S; Ando, T; Ikeda, Y; Kurashima, N. Differentiation of regioisomeric analogs of controlled substances using GC-IR. JCCL, 1 Oct 2016, (56), 49–70. 4.5 MB. #4-Methylamphetamine Japanese, English abstract GC,MS,IR
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #4-methylamphetamine
Tsumura, Y; Kiguchi, A; Komatsuzaki, S; Ieuji, K. A novel method to distinguish β-methylphenylethylamines from isomeric α-methylphenylethylamines by liquid chromatography coupled to electrospray ionization mass spectrometry. Forensic Toxicol., 1 Jul 2020, 38 (2), 465–474. 823 kB. https://doi.org/10.1007/s11419-019-00511-z #22 LC,MS,other
Benington, F; Morin, RD. The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. Med. Chem., 1 Jul 1968, 11 (4), 896–897. 244 kB. https://doi.org/10.1021/jm00310a048 #2.19
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #67