- MDPV
- MDPK
- Methylenedioxypyrovalerone
- 1-(2H-1,3-Benzodioxol-5-yl)-2-(pyrrolidin-1-yl)pentan-1-one
- 1-(1,3-Benzodioxol-5-yl)-2-(pyrrolidin-1-yl)pentan-1-one
Iversen, LL. Consideration of the cathinones, Advisory Council on the Misuse of Drugs, 31 Mar 2010. 286 kB.
Brandt, SD; Freeman, S; Sumnall, HR; Measham, F; Cole, JC. Analysis of NRG ‘legal highs’ in the UK: Identification and formation of novel cathinones. Drug Test. Anal., 1 Sep 2011, 3 (9), 569–575. 176 kB. https://doi.org/10.1002/dta.204
Brandt, SD; Sumnall, HR; Measham, F; Cole, JC. Analyses of second-generation ‘legal highs’ in the UK: Initial findings. Drug Test. Anal., 1 Aug 2010, 2 (8), 377–382. 317 kB. https://doi.org/10.1002/dta.155
Jankovics, P; Váradi, A; Tõlgyesi, L; Lohner, S; Németh-Palotás, J; Kőszegi-Szalai, H. Identification and characterization of the new designer drug 4′-methylethcathinone (4-MEC) and elaboration of a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening method for seven different methcathinone analogs. Forensic Sci. Int., 15 Jul 2011, 210 (1–3), 213–220. 899 kB. https://doi.org/10.1016/j.forsciint.2011.03.019
Coppola, M; Mondola, R. 3,4-Methylenedioxypyrovalerone (MDPV): Chemistry, pharmacology and toxicology of a new designer drug of abuse marketed online. Toxicol. Lett., 5 Jan 2012, 208 (1), 12–25. 138 kB. https://doi.org/10.1016/j.toxlet.2011.10.002
Yohannan, JC; Bozenko, JS. The characterization of 3,4-methylenedioxypyrovalerone. Microgram J., 1 Mar 2010, 7 (1), 12–15. 690 kB.
Westphal, F; Junge, T; Rõsner, P; Sõnnichsen, F; Schuster, F. Mass and NMR spectroscopic characterization of 3,4-methylenedioxypyrovalerone: A designer drug with α-pyrrolidinophenone structure. Forensic Sci. Int., 10 Sep 2009, 190 (1–3), 1–8. 657 kB. https://doi.org/10.1016/j.forsciint.2009.05.001
Kriikku, P; Wilhelm, L; Schwarz, O; Rintatalo, J. New designer drug of abuse: 3,4-Methylenedioxypyrovalerone (MDPV). Findings from apprehended drivers in Finland. Forensic Sci. Int., 15 Jul 2011, 210 (1–3), 195–200. 618 kB. https://doi.org/10.1016/j.forsciint.2011.03.015
Abiedalla, YFH; Abdel-Hay, KM; DeRuiter, J; Clark, CR. Synthesis and GC-MS analysis of a series of homologs and regioisomers of 3,4-methylenedioxypyrovalerone (MDPV). Forensic Sci. Int., 30 Nov 2012, 223 (1–3), 189–197. 657 kB. https://doi.org/10.1016/j.forsciint.2012.08.040
Zuba, D. Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. Trends Anal. Chem., 1 Feb 2012, 32, 15–30. 576 kB. https://doi.org/10.1016/j.trac.2011.09.009
Ross, EA; Reisfield, GM; Watson, MC; Chronister, CW; Goldberger, BA. Psychoactive “Bath Salts” Intoxication with Methylenedioxypyrovalerone. Am. J. Med., 1 Sep 2012, 125 (9), 854–858. 248 kB. https://doi.org/10.1016/j.amjmed.2012.02.019
Spiller, HA; Ryan, ML; Weston, RG; Jansen, J. Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin. Toxicol., 1 Jul 2011, 49 (6), 499–505. 130 kB. https://doi.org/10.3109/15563650.2011.590812
Reitzel, LA; Dalsgaard, PW; Müller, IB; Cornett, C. Identification of ten new designer drugs by GC-MS, UPLC-QTOF-MS, and NMR as part of a police investigation of a Danish Internet company. Drug Test. Anal., 1 May 2012, 4 (5), 342–354. 1.2 MB. https://doi.org/10.1002/dta.358 #MDPV GC,LC,MS,NMR
Zuba, D; Byrska, B. Prevalence and co-existence of active components of ‘legal highs’. Drug Test. Anal., 1 Jun 2013, 5 (6), 420–429. 1.3 MB. https://doi.org/10.1002/dta.1365
Cameron, K; Kolanos, R; Vekariya, R; De Felice, L; Glennon, RA. Mephedrone and methylenedioxypyrovalerone (MDPV), major constituents of “bath salts,” produce opposite effects at the human dopamine transporter. Psychopharmacology, 1 Jun 2013, 227 (3), 493–499. 190 kB. https://doi.org/10.1007/s00213-013-2967-2
Eshleman, AJ; Wolfrum, KM; Hatfield, MG; Johnson, RA; Murphy, KV; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol., 15 Jun 2013, 85 (12), 1803–1815. 2.2 MB. https://doi.org/10.1016/j.bcp.2013.04.004
Gregg, RA; Rawls, SM. Behavioral pharmacology of designer cathinones: A review of the preclinical literature. Life Sci., 27 Feb 2014, 97 (1), 27–30. 249 kB. https://doi.org/10.1016/j.lfs.2013.10.033
De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 622 kB. https://doi.org/10.1016/j.lfs.2013.10.029
German, CL; Fleckenstein, AE; Hanson, GR. Bath salts and synthetic cathinones: An emerging designer drug phenomenon. Life Sci., 27 Feb 2014, 97 (1), 2–8. 390 kB. https://doi.org/10.1016/j.lfs.2013.07.023
EMCDDA. Report on the risk assessment of 1-(1,3-benzodioxol-5-yl)-2-(pyrrolidin-1-yl)pentan-1-one (MDPV), European Monitoring Centre for Drugs and Drug Addiction, Lisbon, . 1.7 MB.
Kavanagh, PV; O’Brien, J; Fox, J; O’Donnell, C; Christie, R; Power, JD; McDermott, SD. The analysis of substituted cathinones. Part 3. Synthesis and characterisation of 2,3-methylenedioxy substituted cathinones. Forensic Sci. Int., 10 Mar 2012, 216 (1–2), 19–28. 1.6 MB. https://doi.org/10.1016/j.forsciint.2011.08.011
Prosser, JM; Nelson, LS. The toxicology of bath salts: a review of synthetic cathinones. J. Med. Toxicol., 1 Nov 2011, 8 (1), 33–22. 267 kB. https://doi.org/10.1007/s13181-011-0193-z
Baumann, MH; Partilla, JS; Lehner, KR; Thorndike, EB; Hoffman, AF; Holy, M; Rothman, RB; Goldberg, SR; Lupica, CR; Sitte, HH; Brandt, SD; Tella, SR; Cozzi, NV; Schindler, CW. Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology, 1 Mar 2013, 38 (4), 552-562. 1.4 MB. https://doi.org/10.1038/npp.2012.204
Bonano, JS; Glennon, RA; Felice, LJ; Banks, ML; Negus, SS. Abuse-related and abuse-limiting effects of methcathinone and the synthetic “bath salts” cathinone analogs methylenedioxypyrovalerone (MDPV), methylone and mephedrone on intracranial self-stimulation in rats. Psychopharmacology, 1 Jan 2014, 231 (1), 199-207. 285 kB. https://doi.org/10.1007/s00213-013-3223-5
Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 1 Jan 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9
EMCDDA. New drugs in Europe, 2014, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Jul 2015. 879 kB.
EMCDDA. New drugs in Europe, 2013, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Jul 2014. 311 kB.
EMCDDA. New drugs in Europe, 2011, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Apr 2012. 401 kB.
EMCDDA. New drugs in Europe, 2010, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2011. 700 kB.
Leffler, AM; Smith, PB; de Armas, A; Dorman, FL. The analytical investigation of synthetic street drugs containing cathinone analogs. Forensic Sci. Int., 1 Jan 2014, 234, 50-56. 973 kB. https://doi.org/10.1016/j.forsciint.2013.08.021
Gwak, S; Arroyo-Mora, LE; Almirall, JR. Qualitative analysis of seized synthetic cannabinoids and synthetic cathinones by gas chromatography triple quadrupole tandem mass spectrometry. Drug Test. Anal., 1 Feb 2015, 7 (2), 121-130. 1.1 MB. https://doi.org/10.1002/dta.1667 #7
Anizan, S; Ellefsen, K; Concheiro, M; Suzuki, M; Rice, KC; Baumann, MH; Huestis, MA. 3,4-Methylenedioxypyrovalerone (MDPV) and metabolites quantification in human and rat plasma by liquid chromatography–high resolution mass spectrometry. Anal. Chim. Acta, 1 May 2014, 827, 54-63. 1.4 MB. https://doi.org/10.1016/j.aca.2014.04.015 #MDPV
Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Anal., 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315
Calderon, SN; Klein, M. A regulatory perspective on the abuse potential evaluation of novel stimulant drugs in the United States. Neuropharmacology, 1 Dec 2014, 87, 97-103. 266 kB. https://doi.org/10.1016/j.neuropharm.2014.04.001
Kavanagh, PV; Power, JD. New psychoactive substances legislation in Ireland – Perspectives from academia. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 884-891. 1.2 MB. https://doi.org/10.1002/dta.1598
Fornal, E. Study of collision-induced dissociation of electrospray-generated protonated cathinones. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 705-715. 527 kB. https://doi.org/10.1002/dta.1573 #37
Terry, SM. Bath Salt Abuse: More Than Just Hot Water. J. Emerg. Nurs., 1 Jan 2014, 40 (1), 88-91. 128 kB. https://doi.org/10.1016/j.jen.2013.05.013
Hudson, AL; Lalies, MD; Baker, GB; Wells, K; Aitchison, KJ. Ecstasy, legal highs and designer drug use: A Canadian perspective. Drug Science, Policy and Law, 1 Jan 2014, 1, 2050324513509190. 230 kB. https://doi.org/10.1177/2050324513509190
Griffiths, P; Evans-Brown, M; Sedefov, R. Getting up to speed with the public health and regulatory challenges posed by new psychoactive substances in the information age: Editorial. Addiction, 1 Jan 2013, 108 (10), 1700-1703. 93 kB. https://doi.org/10.1111/add.12287
Mas-Morey, P; Visser, MHM; Winkelmolen, L; Touw, DJ. Clinical Toxicology and Management of Intoxications With Synthetic Cathinones ("Bath Salts"). J. Pharm. Pract., 25 Nov 2012, 26 (4), 353-357. 312 kB. https://doi.org/10.1177/0897190012465949
Adamowicz, P; Zuba, D. Discrimination among designer drug isomers by chromatographic and spectrometric methods. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 211–232. 1.1 MB.
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #MDPV
EMCDDA. New drugs in Europe, 2008, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2009. 265 kB. #11
Kavanaugh, PR; Biggers, Z. Competing constructions of bath salts use and risk of harm in two mediated contexts. Crime Media Cult., 22 Mar 2018, 1741659018763863. 774 kB. https://doi.org/10.1177/1741659018763863 #MDPV
Rickli, A; Hoener, MC; Liechti, ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur. Neuropsychopharmacol., 1 Mar 2015, 25 (3), 365–376. 1.6 MB. https://doi.org/10.1016/j.euroneuro.2014.12.012 #MDPV
Simmons, SJ; Leyrer-Jackson, JM; Oliver, CF; Hicks, C; Muschamp, JW; Rawls, SM; Olive, MF. DARK classics in chemical neuroscience: Cathinone-derived psychostimulants. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2379–2394. 1.6 MB. https://doi.org/10.1021/acschemneuro.8b00147 #MDPV
Baumann, MH; Walters, HM; Niello, M; Sitte, HH. Neuropharmacology of synthetic cathinones. In New Psychoactive Substances : Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 113–142. 409 kB. https://doi.org/10.1007/164_2018_178 #MDPV
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S1 Cathinones MDPV
Kronstrand, R; Guerrieri, D; Vikingsson, S; Wohlfarth, A; Gréen, H. Fatal poisonings associated with new psychoactive substances. In New Psychoactive Substances : Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 495–541. 477 kB. https://doi.org/10.1007/164_2018_110 #MDPV
Kraemer, M; Boehmer, A; Madea, B; Maas, A. Death cases involving certain new psychoactive substances: A review of the literature. Forensic Sci. Int., 1 May 2019, 298 186–267. 6.7 MB. https://doi.org/10.1016/j.forsciint.2019.02.021 #MDPV
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #CA-007
Okamoto, K; Akimoto, S; Ando, T; Ikeda, Y; Kurashima, N. Differentiation of regioisomeric analogs of controlled substances using GC-IR. JCCL, 1 Oct 2016, (56), 49–70. 4.5 MB. #MDPV Japanese, English abstract GC,MS,IR
Kolanos, R; Solis, E; Sakloth, F; De Felice, LJ; Glennon, RA. “Deconstruction” of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem. Neurosci., 18 Dec 2013, 4 (12), 1524–1529. 393 kB. https://doi.org/10.1021/cn4001236 #6 NMR,other
Gatch, MB; Forster, MJ. Methylenedioxymethamphetamine-like discriminative stimulus effects of pyrrolidinyl cathinones in rats. J. Psychopharmacol., 13 Jun 2020, n/a. 546 kB. https://doi.org/10.1177/0269881120914213 #MDPV
Chen, Y; Canal, CE. Structure–activity relationship study of psychostimulant synthetic cathinones reveals nanomolar antagonist potency of α-pyrrolidinohexiophenone at human muscarinic M2 receptors. ACS Chem. Neurosci., 18 Mar 2020, 11 (6), 960–968. 1.2 MB. https://doi.org/10.1021/acschemneuro.0c00008 #MDPV
Luethi, D; Kolaczynska, KE; Walter, M; Suzuki, M; Rice, KC; Blough, BE; Hoener, MC; Baumann, MH; Liechti, ME. Metabolites of the ring-substituted stimulants MDMA, methylone and MDPV differentially affect human monoaminergic systems. J. Psychopharmacol., 1 Jul 2019, 33 (7), 831–841. 492 kB. https://doi.org/10.1177/0269881119844185 #MDPV
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, n/a (n/a), n/a. 11.3 MB. https://doi.org/10.1002/dta.2905 #3,4-methylenedioxypyrovalerone
Åstrand, A; Guerrieri, D; Vikingsson, S; Kronstrand, R; Green, H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci. Int., 1 Dec 2020, 317 110553. 1.7 MB. https://doi.org/10.1016/j.forsciint.2020.110553 #MDPV
Rouxinol, D; Carmo, H; Carvalho, F; de Lourdes Bastos, M; da Silva, DD. Pharmacokinetics, pharmacodynamics, and toxicity of the new psychoactive substance 3,4-dimethylmethcathinone (3,4-DMMC). Forensic Toxicol., 1 Jan 2020, 38 (1), 15–29. 1.3 MB. https://doi.org/10.1007/s11419-019-00494-x #MDPV
Takahashi, M; Suzuki, J; Nagashima, M; Seto, T; Yasuda, I. Newly detected compounds in uncontrolled drugs purchased in Tokyo between April 2006 and March 2007. Ann. Rep. Tokyo Metr. Inst. P. H., 1 Jan 2007, 58 83–87. 1.1 MB. #MDPV MS,NMR,IR,UV
Toole, KE; Fu, S; Shimmon, RG; Taflaga, S. The use of a portable attenuated total reflectance-Fourier transform infrared spectrometer for the preliminary identification of methcathinone and analogues of methcathinone. JCLIC, 1 Jan 2012, 22 (1-2), 11-24. 1.5 MB. IR
Nahoko, U; Ruri, K; Nobuo, K; Yukihiro, G. Analysis of designer drugs detected in the products purchased in fiscal year 2006. Yakugaku Zasshi, 1 Jan 2008, 128 (10), 1499–1505. 604 kB. https://doi.org/10.1248/yakushi.128.1499 #MDPV GC,LC,MS,NMR
Philp, M; Shimmon, R; Stojanovska, N; Tahtouh, M; Fu, S. Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials. Anal. Methods, 1 Jan 2013, 5 (20), 5402. 783 kB. https://doi.org/10.1039/c3ay40511g #3,4-Methylenedioxypyrovalerone ( MS,NMR,IR,spot