- 4-Chloroamphetamine
- PCA
- 4-CA
- p-Chloroamphetamine
- 4-Cl-AMP
Fuller, RW. Structure-activity relationships among the halogenated amphetamines. Ann. N. Y. Acad. Sci., 1 Jun 1978, 305 (1), 147–159. 730 kB. https://doi.org/10.1111/j.1749-6632.1978.tb31518.x #p-CA
Johnson, MP; Frescas, SP; Oberlender, R; Nichols, DE. Synthesis and pharmacological examination of 1-(3-methoxy-4-methylphenyl)-2-aminopropane and 5-methoxy-6-methyl-2-aminoindan: Similarities to 3,4-(methylenedioxy)methamphetamine (MDMA). J. Med. Chem., 1 May 1991, 34 (5), 1662–1668. 975 kB. https://doi.org/10.1021/jm00109a020 #5 NMR
Johnson, MP; Nuang, X; Oberlender, R; Nash, JF; Nichols, DE. Behavioral, biochemical and neurotoxicological actions of the α-ethyl homologue of p-chloroamphetamine. Eur. J. Pharmacol., 1 Nov 1990, 191 (1), 1–10. 1.2 MB. https://doi.org/10.1016/0014-2999(90)94090-K #PCA
Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10), 1100–1111. 1.2 MB. https://doi.org/10.1021/jm00256a016 #18 other
Scorza, MC; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #9 PCA
Sprague, JE; Johnson, MP; Schmidt, CJ; Nichols, DE. Studies on the mechanism of p-chloroamphetamine neurotoxicity. Biochem. Pharmacol., 25 Oct 1996, 52 (8), 1271–1277. 859 kB. https://doi.org/10.1016/0006-2952(96)00482-0 #PCA
Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. https://doi.org/10.1007/BF03033455
McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M
Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 23 Jul 1991, 200 (1), 9–16. 1.1 MB. https://doi.org/10.1016/0014-2999(91)90659-E #PCA
Ögren, S; Ross, SB. Substituted amphetamine derivatives. II. Behavioural effects in mice related to monoaminergic neurones. Acta Pharmacol. Toxicol., 1 Oct 1977, 41 (4), 353–368. 824 kB. https://doi.org/10.1111/j.1600-0773.1977.tb02674.x #4-Chloroamphetamine
Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. https://doi.org/10.1124/jpet.106.103622
Benington, F; Morin, RD; Clark, LC. Behavioral and neuropharmacological actions of N-aralkylhydroxylamines and their O-methyl ethers. J. Med. Chem., 1 Jan 1965, 8 (1), 100–104. 634 kB. https://doi.org/10.1021/jm00325a020 #15
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #79 Rhodium.
Fuller, RW; Perry, KW; Wong, DT; Molloy, BB. Effects of some homologues of 4-chloroamphetamine on brain serotonin metabolism. Neuropharmacology, 1 Jul 1974, 13 (7), 609–614. 490 kB. https://doi.org/10.1016/0028-3908(74)90050-1 #4-Chloroamphetamine
Fuller, RW; Baker, JC; Perry, KW; Molloy, BB. Comparison of 4-chloro-, 4-bromo- and 4-fluoroamphetamine in rats: Drug levels in brain and effects on brain serotonin metabolism. Neuropharmacology, 1 Oct 1975, 14 (10), 739–746. 799 kB. https://doi.org/10.1016/0028-3908(75)90099-4
Owen, MLS; Baker, GB; Coutts, RT; Dewhurst, WG. Analysis of p-chloroamphetamine and a side-chain monofluorinated analogue in rat brain. J. Pharmacol. Methods, 1 Apr 1991, 25 (2), 147–155. 497 kB. https://doi.org/10.1016/0160-5402(91)90005-P #pCA MS
Fuller, RW. Effects of p-chloroamphetamine on brain serotonin neurons. Neurochem. Res., 1 May 1992, 17 (5), 449–456. 906 kB. https://doi.org/10.1007/BF00969891 #PCA
Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 1 Jan 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9
Segawa, H; Iwata, YT; Yamamuro, T; Kuwayama, K; Tsujikawa, K; Kanamori, T; Inoue, H. Differentiation of ring-substituted regioisomers of amphetamine and methamphetamine by supercritical fluid chromatography: Differentiation of ring-substituted regioisomers by supercritical fluid chromatography. Drug Test. Anal., 1 Mar 2017, 9 (3), 389-398. 1.3 MB. https://doi.org/10.1002/dta.2040
EMCDDA. New drugs in Europe, 2012, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2013. 773 kB. #65
Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, 11 Feb 2011, 50, 63-82. 627 kB. Japanese, English abstract LC,MS,NMR,IR
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #3.45
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
van Praag, HM; Schut, T; Bosma, E; van den Bergh, R. A comparative study of the therapeutic effects of some 4-chlorinated amphetamine derivatives in depressive patients. Psychopharmacologia, 1 Mar 1971, 20 (1), 66-76. 645 kB. https://doi.org/10.1007/BF00404060 #4-CA
Patrick, TM; McBee, ET; Hass, HB. Synthesis of arylpropylamines. I. From allyl chloride. J. Am. Chem. Soc., 1 Jun 1946, 68 (6), 1009-1011. 376 kB. https://doi.org/10.1021/ja01210a032 #1-(p-Chlorophenyl)-2-propylamine
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Sloviter, RS; Connor, JD; Dimaano, BP; Drust, EG. Para-halogenated phenethylamines: Similar serotonergic effects in rats by different mechanisms. Pharmacol. Biochem. Behav., 1 Aug 1980, 13 (2), 283-286. 373 kB. https://doi.org/10.1016/0091-3057(80)90084-2 #pCA
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB.
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #11
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Nichols, DF; Oberlender, R. Structure-activity relationships of MDMA and related compounds: A new class of psychoactive agents? In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 105–131. 733 kB. https://doi.org/10.1007/978-1-4613-1485-1_7 #14
Negishi, S; Nakazono, Y; Iwata, YT; Kanamori, T; Tsujikawa, K; Kuwayama, K; Yamamuro, T; Miyamoto, K; Yamashita, T; Kasuya, F; Inoue, H. Differentiation of regioisomeric chloroamphetamine analogs using gas chromatography–chemical ionization-tandem mass spectrometry. Forensic Toxicol., 1 Jul 2015, 33 (2), 338–347. 805 kB. https://doi.org/10.1007/s11419-015-0280-y #4-CAP GC,MS,NMR
Gobbi, M; Funicello, M; Gerstbrein, K; Holy, M; Moya, PR; Sotomayor, R; Forray, MI; Gysling, K; Paluzzi, S; Bonanno, G; Reyes-Parada, M; Sitte, HH; Mennini, T. N,N-Dimethyl-thioamphetamine and methyl-thioamphetamine, two non-neurotoxic substrates of 5-HT transporters, have scant in vitro efficacy for the induction of transporter-mediated 5-HT release and currents. J. Neurochem., 1 Jun 2008, 105 (5), 1770–1780. 589 kB. https://doi.org/10.1111/j.1471-4159.2008.05272.x #pCA
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #4-chloroamphetamine
Benington, F; Morin, RD. The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. Med. Chem., 1 Jul 1968, 11 (4), 896–897. 244 kB. https://doi.org/10.1021/jm00310a048 #2.11
Nichols, DE. CNS Stimulants. In Burger's Medicinal Chemistry and Drug Discovery; Abraham, DJ, Ed., John Wiley & Sons, Inc., 29 Jan 2010; pp 89–120. 1.8 MB. https://doi.org/10.1002/0471266949.bmc243 #26
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #68
Huang, X; Marona-Lewicka, D; Nichols, DE. p-Methylthioamphetamine is a potent new non-neurotoxic serotonin-releasing agent. Eur. J. Pharmacol., 8 Dec 1992, 229 (1), 31–38. 702 kB. https://doi.org/10.1016/0014-2999(92)90282-9 #PCA
Nichols, DE; Marona-Lewicka, D; Huang, X; Johnson, MP. Novel serotonergic agents. Drug Des. Discovery, 1 Feb 1993, 9 (3–4), 299–312. 4.7 MB. #PCA
Kostrzewa, RM. Selective neurotoxins, chemical tools to probe the mind: The first thirty years and beyond. Neurotox. Res., 1 Mar 1999, 1 (1), 3–25. 3.6 MB. https://doi.org/10.1007/BF03033336 #PCA