- DOB-dragonFLY
- Bromo-dragonFLY
- BDF
- B-DFLY
- 1-(8-Bromofuro[2,3-f][1]benzofuran-4-yl)propan-2-amine
- DOB-DFLY
Parker, MA; Marona-Lewicka, D; Lucaites, VL; Nelson, DL; Nichols, DE. A novel (benzodifuranyl)aminoalkane with extremely potent activity at the 5-HT2A receptor. J. Med. Chem., 1 Dec 1998, 41 (26), 5148–5149. 382 kB. https://doi.org/10.1021/jm9803525 #3 NMR
Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. https://doi.org/10.1016/j.bmc.2008.02.033 #1
Chambers, JJ; Kurrasch-Orbaugh, DM; Parker, MA; Nichols, DE. Enantiospecific synthesis and pharmacological evaluation of a series of super-potent, conformationally restricted 5-HT2A/2C receptor agonists. J. Med. Chem., 1 Mar 2001, 44 (6), 1003–1010. 337 kB. https://doi.org/10.1021/jm000491y #6b NMR
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #282 In German. MS,NMR,IR
Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133 #40
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Parker, MA. Studies of perceptiotropic phenethylamines: Determinants of affinity for the 5-HT2A receptor. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 May 1998. 4.8 MB.
Zaitsu, K; Katagi, M; Kamata, H; Nakanishi, K; Shima, N; Kamata, T; Nishioka, H; Miki, A; Tatsuno, M; Tsuchichashi, H. Simultaneous analysis of six novel hallucinogenic (tetrahydrobenzodifuranyl)aminoalkanes (FLYs) and (benzodifuranyl)aminoalkanes (DragonFLYs) by GC-MS, LC-MS, and LC-MS-MS. Forensic Toxicol., 1 Jan 2010, 24 (1), 9–18. 570 kB. https://doi.org/10.1007/s11419-009-0083-0
Jensen, N. Tryptamines as ligands and modulators of the serotonin 5-HT2A receptor and the isolation of aeruginascin from the hallucinogenic mushroom Inocybe aeruginascens. Ph. D. Thesis, Georg-August-Universität zu Göttingen, Göttingen, Germany, 4 Nov 2004. 2.3 MB. Referent: Prof. Dr. H. Laatsch; Korreferent: Prof. D. E. Nichols.
Coppola, M; Mondola, R. Bromo-DragonFly: Chemistry, pharmacology and toxicology of a benzodifuran derivative producing LSD-like effects. J. Addict. Res. Ther., 1 Oct 2012, 3 (4), 133. 1.2 MB. https://doi.org/10.4172/2155-6105.1000133
Reed, EC; Kiddon, GS. The characterization of three FLY compounds (2C-B-FLY, 3C-B-FLY, and Bromo-DragonFLY). Microgram J., 1 Jan 2007, 5 (1–4), 26–33. 112 kB. #Bromo-DragonFLY GC,MS,NMR,IR
O’Connor, RE; Keating, JJ. Characterization of synthetic routes to ‘Bromo-DragonFLY’ and benzodifuranyl isopropylamine homologues utilizing ketone intermediates. Part 1: Synthesis of ketone precursors. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 658-667. 812 kB. https://doi.org/10.1002/dta.1504
Huntington, BC. Synthesis and intermediate/by-product analysis of bromo-dragonfly, a dihydrobenzofuran analogue of phenethylamine hallucinogens. M. Sc. Thesis, University of California Davis, Sacramento, CA, USA, . 927 kB. MS
Wood, DM; Looker, JJ; Shaikh, L; Lidder, S; Ramsey, J; Holt, DW; Dargan, PI. Delayed onset of seizures and toxicity associated with recreational use of Bromo-dragonFLY. J. Med. Toxicol., 1 Dec 2009, 5 (4), 226–229. 732 kB. https://doi.org/10.1007/BF03178273
Isberg, V; Paine, J; Leth-Petersen, S; Kristensen, JL; Gloriam, DE. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors. PLoS ONE, 7 Nov 2013, 8 (11), e78515. 2.3 MB. https://doi.org/10.1371/journal.pone.0078515
McGonigal, MK; Wilhide, JA; Smith, PB; Elliott, NM; Dorman, FL. Analysis of synthetic phenethylamine street drugs using direct sample analysis coupled to accurate mass time of flight mass spectrometry. Forensic Sci. Int., 1 Jun 2017, 275, 83–89. 2.3 MB. https://doi.org/10.1016/j.forsciint.2017.02.025 #Bromo Dragon Fly
Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Anal., 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #53
Kavanagh, PV; Power, JD. New psychoactive substances legislation in Ireland – Perspectives from academia. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 884-891. 1.2 MB. https://doi.org/10.1002/dta.1598
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #51
Smith, G; Cotton, MS; Wermuth, UD; Boyd, SE. Crystallographic characterization of the first reported crystalline form of the potent hallucinogen (R)-2-amino-1-(8-bromobenzo[1,2-b;5,4-b′]difuran-4-yl)propane or ‘bromodragonfly’: The 1:1 anhydrous proton-transfer compound with 3,5-dinitrosalicylic acid. Acta Crystallogr. C, 15 Apr 2010, 66 (5), o252–o255. 329 kB. https://doi.org/10.1107/S0108270110012850 #BDF
EMCDDA. New drugs in Europe, 2006, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2007. 375 kB. #Bromo-Dragonfly
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #DOB-DFLY
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 (896). 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #Bromo-DragonFly
Fenderson5555. Two syntheses of bromo-dragonFLY. , 15 Dec 2012. . Fenderson5555 9.8 MB.
Pottie, E; Cannaert, A; Stove, CP. In vitro structure–activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch. Toxicol., 1 Oct 2020, 94 (10), 3449–3460. 919 kB. https://doi.org/10.1007/s00204-020-02836-w #Bromo-dragonFLY
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #bromo-dragonFLY
Åstrand, A; Guerrieri, D; Vikingsson, S; Kronstrand, R; Green, H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci. Int., 1 Dec 2020, 317, 110553. 1.7 MB. https://doi.org/10.1016/j.forsciint.2020.110553 #Bromo-DragonFLY
Borenstein, S. Scientist haunted by misuse of drugs he invented. JCLIC, 1 Jan 2011, 21 (1), 3-4. 368 kB. #bromo-dragonfly
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #Bromo-DragonFLY