- MA
- Methamphetamine
Angoa-Pérez, M; Kane, MJ; Francescutti, DM; Sykes, KE; Shah, MM; Mohammed, AM; Thomas, DM; Kuhn, DM. Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J. Neurochem., 1 Mar 2012, 120 (6), 1097–1107. 777 kB. https://doi.org/10.1111/j.1471-4159.2011.07632.x
Baumann, MH; Ayestas, MA; Partilla, JS; Sink, JR; Shulgin, AT; Daley, PF; Brandt, SD; Rothman, RB; Ruoho, AE; Cozzi, NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacol., 1 Apr 2012, 37, 1192–1203. 763 kB. https://doi.org/10.1038/npp.2011.304
Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. https://doi.org/10.1007/BF03033455
McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M
Cozzi, NV; Sievert, MK; Shulgin, AT; Jacob, P; Ruoho, AE. Inhibition of plasma membrane monoamine transporters by β-ketoamphetamines. Eur. J. Pharmacol., 1 Jan 1999, 381 (1), 63–69. 111 kB. https://doi.org/10.1016/S0014-2999(99)00538-5
Rothman, RB; Blough, BE; Baumann, MH. Dual dopamine/serotonin releasers as potential medications for stimulant and alcohol addictions. AAPS J., 1 Mar 2007, 9 (1), E1–E10. 999 kB. https://doi.org/10.1208/aapsj0901001
Buffum, JC; Shulgin, AT. Overdose of 2.3 grams of intravenous methamphetamine: Case, analysis and patient perspective. J. Psychoactive Drugs, 1 Oct 2001, 33 (4), 409–412. 704 kB. https://doi.org/10.1080/02791072.2001.10399926
Woolverton, WL; Shybut, G; Johanson, CE. Structure-activity relationships among some d-N-alkylated amphetamines. Pharmacol. Biochem. Behav., 1 Jan 1980, 13 (6), 869–876. 783 kB. https://doi.org/10.1016/0091-3057(80)90221-X #NMA
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Repke, DB; Ferguson, WJ; Bates, DK. Synthesis of secondary methylalkylamines. Tetrahedron Lett., 1 Jan 1979, 20 (43), 4183–4184. 149 kB. https://doi.org/10.1016/S0040-4039(01)86538-2
Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 27 Aug 2002, 9, 1634–1638. 115 kB. https://doi.org/10.1039/b200607c
Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. https://doi.org/10.1124/jpet.106.103622
LeBelle, MJ; Savard, C; Dawson, BA; Black, DB; Katyal, LK; Zrcek, F; By, AW. Chiral identification and determination of ephedrine, pseudoephedrine, methamphetamine and metecathinone by gas chromatography and nuclear magnetic resonance. Forensic Sci. Int., 28 Feb 1995, 71 (3), 215–223. 405 kB. https://doi.org/10.1016/0379-0738(94)01669-0 GC,MS,NMR
Bianchi, RP; Shah, MN; Rogers, DH; Mrazik, TJ. Laboratory analysis of the conversion of pseudoephedrine to methamphetamine from over-the-counter products. Microgram J., 1 Jan 2005, 3 (1–2), 11–15. 32 kB.
Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB. MS
Martinez, FS; Roesch, DM; Jacobs, JL. Isolation of methamphetamine from 1-(1′,4′-cyclohexadienyl)-2-methylaminopropane (CMP) using potassium permanganate. Microgram J., 1 Jan 2008, 6 (1–2), 46–54. 149 kB.
Lurie, IS; Bozenko, JS; Li, L; Miller, EE; Greenfield, SJ. Chiral separation of methamphetamine and related compounds using capillary electrophoresis with dynamically coated capillaries. Microgram J., 1 Jan 2011, 8 (1), 24–28. 786 kB.
Fultz, BA; Mann, JA; Gardne, EA. Methamphetamine contaminated currency in the Birmingham, Alabama metropolitan area. Microgram J., 1 Jan 2012, 9 (2), 57–60. 209 kB.
Warren, RJ; Begosh, PP; Zarembo, JE. Identification of amphetamines and related sympathomimetic amines. J. Assoc. Off. Anal. Chem., , 54 (5), 1179–1191. 3.4 MB. #3 NMR,IR,UV
Worsham, JN. 5-HT3 receptor ligands and their effect on psychomotor stimulants. M. Sc. Thesis, Virginia Commonwealth University, Richmond, VA, USA, 1 May 2008. 956 kB.
Clarke, EGC. The identification of amphetamine type drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 31–36. 770 kB. https://doi.org/10.1016/S0015-7368(67)70368-0 #Methylamphetamine TLC
Cameron, K; Kolanos, R; Vekariya, R; De Felice, L; Glennon, RA. Mephedrone and methylenedioxypyrovalerone (MDPV), major constituents of “bath salts,” produce opposite effects at the human dopamine transporter. Psychopharmacology, 1 Jun 2013, 227 (3), 493–499. 190 kB. https://doi.org/10.1007/s00213-013-2967-2
Rasmussen, N. Making the first anti-depressant: Amphetamine in American medicine, 1929-1950. J. Hist. Med. Allied Sci., 1 Jul 2006, 61 (3), 288–323. 175 kB. https://doi.org/10.1093/jhmas/jrj039
Stojanovska, N; Fu, S; Tahtouh, M; Kelly, T; Beavis, A; Kirkbride, KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int., 10 Jan 2013, 224 (1–3), 8–26. 813 kB. https://doi.org/10.1016/j.forsciint.2012.10.040
Eshleman, AJ; Wolfrum, KM; Hatfield, MG; Johnson, RA; Murphy, KV; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol., 15 Jun 2013, 85 (12), 1803–1815. 2.2 MB. https://doi.org/10.1016/j.bcp.2013.04.004
Dybdal-Hargreaves, NF; Holder, ND; Ottoson, PE; Sweeney, MD; Williams, T. Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur. J. Pharmacol., 15 Aug 2013, 714 (1–3), 32–40. 837 kB. https://doi.org/10.1016/j.ejphar.2013.05.024
De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 622 kB. https://doi.org/10.1016/j.lfs.2013.10.029
Angoa-Pérez, M; Kane, MJ; Herrera-Mundo, N; Francescutti, DM; Kuhn, DM. Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci., 27 Feb 2014, 97 (1), 31–36. 888 kB. https://doi.org/10.1016/j.lfs.2013.07.015
Halpin, LE; Collins, SA; Yamamoto, BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci., 27 Feb 2014, 97 (1), 37–44. 507 kB. https://doi.org/10.1016/j.lfs.2013.07.014
Gouzoulis-Mayfrank, E. Differential actions of an entactogen compared to a stimulant and a hallucinogen in healthy humans. Heffter Rev., , 2, 64–72. 261 kB.
Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., 1 Aug 1975, 47 (9), 841a–844a. 1.6 MB. https://doi.org/10.1021/ac60359a050
EMCDDA. New drugs in Europe, 2016, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2017. 489 kB.
EMCDDA. New drugs in Europe, 2011, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Apr 2012. 401 kB.
Allen, A; Cantrell, TS. Synthetic reductions in clandestine amphetamine and methamphetamine laboratories: A review. Forensic Sci. Int., 1 Aug 1989, 42 (3), 183–199. 1.0 MB. https://doi.org/10.1016/0379-0738(89)90086-8
Clark, CR. Synthesis and analytical profiles for regioisomeric and isobaric amines related to MDMA, MDEA and MBDB: Differentiation of drug and non-drug substances of mass spectral equivalence, US DOJ, 1 Oct 2011. 3.9 MB.
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #Table 3.7 H
Ko, BJ; Suh, S; Suh, YJ; In, MK; Kim, S; Kim, J. (1S,2S)-1-Methylamino-1-phenyl-2-chloropropane: Route specific marker impurity of methamphetamine synthesized from ephedrine via chloroephedrine. Forensic Sci. Int., 1 Sep 2012, 221 (1-3), 92-97. 328 kB. https://doi.org/10.1016/j.forsciint.2012.04.008
Patrick, TM; McBee, ET; Hass, HB. Synthesis of arylpropylamines. I. From allyl chloride. J. Am. Chem. Soc., 1 Jun 1946, 68 (6), 1009-1011. 376 kB. https://doi.org/10.1021/ja01210a032 #N-Methyl-1-phenyl-2-propylamine
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Calderon, SN; Klein, M. A regulatory perspective on the abuse potential evaluation of novel stimulant drugs in the United States. Neuropharmacology, 1 Dec 2014, 87, 97-103. 266 kB. https://doi.org/10.1016/j.neuropharm.2014.04.001
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Wilkins, C; Sweetsur, P. The impact of the prohibition of benzylpiperazine (BZP) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand. Drug Alcohol Depend., 1 Jan 2013, 127 (1-3), 72-80. 521 kB. https://doi.org/10.1016/j.drugalcdep.2012.06.014
Desai, RI; Thakur, GA; Vemuri, VK; Bajaj, S; Makriyannis, A; Bergman, J. Analysis of Tolerance and Behavioral/Physical Dependence during Chronic CB1 Agonist Treatment: Effects of CB1 Agonists, Antagonists, and Noncannabinoid Drugs. J. Pharmacol. Exp. Ther., 29 Nov 2012, 344 (2), 319-328. 1.1 MB. https://doi.org/10.1124/jpet.112.198374
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB.
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB.
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Simmler, LD; Liechti, ME. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 143-164. 298 kB. https://doi.org/10.1007/164_2018_113
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #MA
Broadley, KJ. The vascular effects of trace amines and amphetamines. Pharmacol. Ther., 1 Mar 2010, 125 (3), 363–375. 1.1 MB. https://doi.org/10.1016/j.pharmthera.2009.11.005 #methamphetamine
Doughty, D; Painter, B; Pigou, P; Johnston, MR. The synthesis and investigation of impurities found in clandestine laboratories: Baeyer-Villiger route part II; Synthesis of phenyl-2-propanone (P2P) analogues from substituted benzaldehydes. Forensic Chem., 1 Jun 2018, 9, 1–11. 2.1 MB. https://doi.org/10.1016/j.forc.2018.03.007 #Methamphetamine GC,MS,NMR,other
Bishop, SC; McCord, BR; Gratz, SR; Loeliger, JR; Witkowski, MR. Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector. J. Forensic Sci., 1 Mar 2005, 50 (2), 1–10. 597 kB. https://doi.org/10.1520/JFS2004239 #Methamphetamine LC,MS,UV,other
Person, EC; Meyer, JA; Vyvyan, JR. Structural determination of the principal byproduct of the lithium-ammonia reduction method of methamphetamine manufacture. J. Forensic Sci., 1 Jan 2005, 50 (1), 1–9. 473 kB. https://doi.org/10.1520/JFS2004204 #Methamphetamine GC,MS,NMR,IR,UV
Lurie, IS; Bethea, MJ; McKibben, TD; Hays, PA; Pellegrini, P; Sahai, R; Garcia, AD; Weinberger, R. Use of dynamically coated capillaries for the routine analysis of methamphetamine, amphetamine, MDA, MDMA, MDEA, and cocaine using capillary electrophoresis. J. Forensic Sci., 1 Sep 2001, 46 (5), 1025–1032. 346 kB. https://doi.org/10.1520/JFS15096J #Methamphetamine other
Rothman, RB; Vu, N; Partilla, JS; Roth, BL; Hufeisen, SJ; Compton-Toth, BA; Birkes, J; Young, R; Glennon, RA. In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates. J. Pharmacol. Exp. Ther., 1 Oct 2003, 307 (1), 138–145. 516 kB. https://doi.org/10.1124/jpet.103.053975 #Methamphetamine
Johnson, MW; Griffiths, RR; Hendricks, PS; Henningfield, JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 1 Nov 2018, 142, 143-166. 2.5 MB. https://doi.org/10.1016/j.neuropharm.2018.05.012 #Methamfetamine
Gibb, JW; Stone, D; Johnson, M; Hanson, GR. Neurochemical effects of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 133–150. 659 kB. https://doi.org/10.1007/978-1-4613-1485-1_8 #Methamphetamine
Nichols, DE. CNS Stimulants. In Burger's Medicinal Chemistry and Drug Discovery; Abraham, DJ, Ed., John Wiley & Sons, Inc., 29 Jan 2010; pp 89–120. 1.8 MB. https://doi.org/10.1002/0471266949.bmc243 #11,18
Chambers, SA; DeSousa, JM; Huseman, ED; Townsend, SD. The DARK side of total synthesis: Strategies and tactics in psychoactive drug production. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2307–2330. 8.1 MB. https://doi.org/10.1021/acschemneuro.7b00528 #127
Rickli, A; Hoener, MC; Liechti, ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur. Neuropsychopharmacol., 1 Mar 2015, 25 (3), 365–376. 1.6 MB. https://doi.org/10.1016/j.euroneuro.2014.12.012 #Methamphetamine
Wenthur, CJ. Classics in Chemical Neuroscience: Methylphenidate. ACS Chem. Neurosci., 17 Aug 2016, 7 (8), 1030–1040. 531 kB. https://doi.org/10.1021/acschemneuro.6b00199 #15
Baumann, MH; Walters, HM; Niello, M; Sitte, HH. Neuropharmacology of synthetic cathinones. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 113–142. 409 kB. https://doi.org/10.1007/164_2018_178 #Methamphetamine
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S1 Phenethylamines d-Methampheta
Abbruscato, TJ; Trippier, PC. DARK classics in chemical neuroscience: Methamphetamine. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2373-2378. 393 kB. https://doi.org/10.1021/acschemneuro.8b00123 #1
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #PP-008, PP-009, PP-010
Matsushita, T; Ishibashi, H; Morio, H. Study on methods to discriminate the stimulant analogues fluoroamphetamines and fluoromethamphetamines. JCCL, 1 Sep 2014, (54), 91–103. 582 kB. #Meth Japanese, English abstract GC,MS,IR,TLC
Anneken, JH; Angoa-Perez, M; Sati, GC; Crich, D; Kuhn, DM. Assessing the role of dopamine in the differential neurotoxicity patterns of methamphetamine, mephedrone, methcathinone and 4-methylmethamphetamine. Neuropharmacology, 1 May 2018, 134, 46–56. 3.5 MB. https://doi.org/10.1016/j.neuropharm.2017.08.033 #METH
Elliott, SP; Holdbrook, T; Brandt, SD. Prodrugs of new psychoactive substances (NPS): A new challenge. J. Forensic Sci., 13 Jan 2020, 65 (3), 913-920. 815 kB. https://doi.org/10.1111/1556-4029.14268 #Methamphetamine MS,UV
Klagges, J; Burgos-Villaseca, J; Benavente-Schonhaut, S; Malhue, V; Hernandez, A; Burgos, H; Castro-Castillo, V; Sáez-Briones, P. Behavioral characterization of the acute effects in rats of 2,4-DMA (2,4-dimethoxyamphetamine) as precursor of atypical psychotropic derivatives. ResearchGate, 23 Sep 2015. 312 kB. https://doi.org/10.13140/RG.2.1.3507.8167 #MA
Sáez-Briones, P; Hernández, A. MDMA (3,4-Methylenedioxymethamphetamine) Analogues as Tools to Characterize MDMA-Like Effects: An Approach to Understand Entactogen Pharmacology. Curr. Neuropharmacol., 1 Sep 2013, 11 (5), 521–534. 1.4 MB. https://doi.org/10.2174/1570159X11311050007 #methamphetamine
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #S-methamphetamine
Tsumura, Y; Kiguchi, A; Komatsuzaki, S; Ieuji, K. A novel method to distinguish β-methylphenylethylamines from isomeric α-methylphenylethylamines by liquid chromatography coupled to electrospray ionization mass spectrometry. Forensic Toxicol., 1 Jul 2020, 38 (2), 465–474. 823 kB. https://doi.org/10.1007/s11419-019-00511-z #16 LC,MS,other
Asanuma, M; Miyazaki, I; Funada, M. The neurotoxicity of psychoactive phenethylamines “2C series” in cultured monoaminergic neuronal cell lines. Forensic Toxicol., 1 Jul 2020, 38 (2), 394–408. 5.5 MB. https://doi.org/10.1007/s11419-020-00527-w #METH
Anon. Lab seizures — “Bottled pop” meth procedure described. JCLIC, 1 Oct 1999, 9 (4), 7-8. 531 kB.
Malone, JV. HPLC quantitation of clandestinely manufactured mixtures of amphetamine and methamphetamine. JCLIC, 1 Oct 1998, 8 (4), 26-27. 552 kB. LC
McKibben, T. Protecting group chemistry. JCLIC, 1 Oct 1997, 7 (4), 30-42. 1.1 MB.
Oulton, SR. Separation and identification of ephedrine, pseudoephedrine and methamphetamine mixtures. JCLIC, 1 Oct 1997, 7 (4), 19-23. 621 kB. GC,IR
Fifka, P. Pervitin (methamphetamine) production in Slovak Republic. JCLIC, 1 Mar 1996, 6 (2), 13-14. 554 kB.
Popovich, GL. Instant methamphetamine. JCLIC, 1 Jul 1995, 5 (3), 7-8. 522 kB.
Dawson, N. The sodium-ammonia “Nazi” method of methamphetamine synthesis: A historical overview, methodology and case reviews. JCLIC, 1 Jul 1995, 5 (3), 12-14. 551 kB.
Chappell, J; Lee, M. Isolation and identification of methamphetamine hydroiodide from clandestine laboratory samples. JCLIC, 1 Mar 1995, 5 (2), 16-20. 548 kB. IR
Vallely, P. A single step process for methamphetamine manufacture using hypophosphorous acid. JCLIC, 1 Mar 1995, 5 (2), 14-15. 559 kB.
Kazankov, SP; Sorokin, VI. The methods of methamphetamine syntheses most commonly used in Russia. JCLIC, 1 Mar 1995, 5 (2), 12-13. 547 kB.
Bentley, ST. A validation study of the “cold method”. JCLIC, 1 Jan 1993, 3 (1), 12-13. 543 kB.
Miller, B. A single step electrochemical synthesis of methylamphetamine from pseudoephedrine using non-controlled reagents. JCLIC, 1 Oct 2017, 27 (4), 25-41. 1.9 MB. #3 MS,IR
Donovan, R. The identification and synthesis of novel byproducts associated with the dissolving metal reduction of pseudoephedrine. JCLIC, 1 Oct 2017, 27 (4), 16-24. 799 kB. #2 GC,MS,NMR
Johnson, C; Bogun, B. Analysis, hydrolysis reactions and yields of methamphetamine from liquid containing N-tert-butoxycarbonyl-methamphetamine (T-BOC-methamphetamine). JCLIC, 1 Jul 2017, 27 (3), 37-40. 669 kB. GC,MS
Watson, J; Coxon, A; Bogun, B. Red phosphorus in the manufacture of methamphetamine from pseudoephedrine and iodine: Part I — Commercially sourced red phosphorus. JCLIC, 1 Oct 2015, 25 (4), 21-37. 1.5 MB. other
Chappell, JS. Infrared absorption properties of solid-dosage drug substances. Part II. Infrared absorption by hydrogen bonds. JCLIC, 1 Mar 2014, 24 (2-3), 9-27. 1.6 MB. IR
Doughty, D; Johnston, MR; Painter, B; Pigou, PE. A novel reducing agent for the reductive amination of phenyl-2-propane (P2P) and methylamine to methamphetamine — sodium triacetoxyborohydride (STAB). JCLIC, 1 Mar 2014, 24 (2-3), 28-33. 1.2 MB. GC,MS,NMR
Painter, B; Pigou, PE. The Akabori-Momotani reaction: The next frontier in illicit drug manufacture? JCLIC, 1 Mar 2012, 22 (2-3), 6-14. 858 kB. GC,MS
Walker, AR; Love, DW; Bordelon, JA. Phosphorous acid flakes used as a substitute for red phosphorus in the reduction of (pseudo)ephedrine to methamphetamine. JCLIC, 1 Mar 2010, 20 (2), 14-18. 524 kB. GC
Wojcik, C. Safety alert: New “cold method” labs on increase. JCLIC, 1 Oct 1992, 2 (4), 2-3. 573 kB.
Cox, M; Klass, G; Koo, CWM. Forensic aspects of the biotransformation of benzaldehyde used in the synthesis of methamphetamine, Part 1: Reaction conditions, stereochemical outcomes, and the use of other substituted benzaldehydes. JCLIC, 1 Oct 2009, 19 (4), 23-37. 884 kB. #1 GC
Mayo, E; Coxon, A; Johnson, C. The reduction of pseudoephedrine to methamphetamine using phosphorous acid and iodine. JCLIC, 1 Jul 2009, 19 (3), 30-39. 927 kB.
Norman, K. The synthesis of amphetamine and methamphetamine: A “big” picture. JCLIC, 1 Jul 2009, 19 (3), 10-29. 896 kB.
Bozenko, JS. Clandestine enantiomeric enrichment of d-methamphetamine via tartaric acid resolution. JCLIC, 1 Jul 2008, 18 (3), 4-8. 470 kB. MS,NMR,IR
Person, EC; Heegel, RA; Knops, LA; Northrop, DM. Phosphorus-containing reducing agents: A review of their chemistry and use in the manufacture of methamphetamine and the significance of observed phosphate, phosphite, and hypophosphite in clandestine laboratory casework. JCLIC, 1 Mar 2008, 18 (2), 7-44. 920 kB.
Martinez, FS; Roesch, DM; Jacobs, JL. Isolation of methamphetamine from 1-(1′,4′-cyclohexadienyl)-2-methylaminopropane using potassium permanganate. JCLIC, 1 Jan 2008, 18 (1), 18-22. 543 kB. MS,IR
Culshaw, PN. Electrochemical reduction of pseudoephedrine to methylamphetamine. JCLIC, 1 Mar 2007, 17 (2), 5-8. 354 kB. GC
Kinney, TL; Jorgenson, M. Methamphetamine “manufacture” from gun bluing. JCLIC, 1 Jan 2007, 17 (1), 9-14. 1.1 MB.
Hugel, J; Robertson, C. The synthesis of MDMA and methamphetamine from the corresponding ketones, methylamine hydrochloride, and sodium borohydride. JCLIC, 1 Jan 2007, 17 (1), 15-25. 707 kB. MS,IR
Cohen, WS. Ephedra used as a precursor in methamphetamine manufacturing. JCLIC, 1 Apr 2006, 16 (2), 21–22. 81 kB. MS
Person, EC; Knops, LA; Northrop, DM; Sheridan, SP. “One-pot” methamphetamine manufacture. JCLIC, 1 Mar 2004, 14 (2), 14-15. 168 kB. GC
Watson, J; Coxon, A; Bogun, B. Red phosphorus in the manufacture of methamphetamine from pseudoephedrine and iodine: Part II — Red phosphorus from safety matchboxes. JCLIC, 1 Oct 2015, 25 (4), 38-51. 1.8 MB. other
Dal Cason, TA. Perspectives on “Nazi dope” and the mythical “Nazi patent”. JCLIC, 1 Mar 1997, 7 (2), 13-13. 519 kB.
Andrighetto, LM; Henderson, LC; Pearson, JR; Stevenson, PG; Conlan, XA. Influence of base on nitro-aldol (Henry) reaction products for alternative clandestine pathways. Aust. J. Forensic Sci., 1 Nov 2016, 48 (6), 684–693. 591 kB. https://doi.org/10.1080/00450618.2015.1112429 #3 MS,NMR
Mesley, RJ; Evans, WH. Infrared identification of some hallucinogenic derivatives of tryptamine and amphetamine. J. Pharm. Pharmacol., 1 May 1970, 22 (5), 321–332. 775 kB. https://doi.org/10.1111/j.2042-7158.1970.tb08533.x #Methylamphetamine IR
Angelos, SA; Janovsky, TJ; Raney, JK. The identification and quantitation of pharmaceutical preparations by nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Mar 1991, 36 (2), 358–365. 383 kB. https://doi.org/10.1520/JFS13038J #Methamphetamine NMR
Sekine, H; Nakahara, Y. Abuse of smoking methamphetamine mixed with tobacco: II. The formation mechanism of pyrolysis products. J. Forensic Sci., 1 May 1990, 35 (3), 580–590. 436 kB. https://doi.org/10.1520/JFS12864J #Methamphetamine MS,NMR,IR,other
Liu, JH; Ramesh, S; Tsay, JT; Ku, WW; Fitzgerald, MP; Angelos, SA; Lins, CLK. Approaches to drug sample differentiation. II: Nuclear magnetic resonance spectrometric determination of methamphetamine enantiomers. J. Forensic Sci., 1 Oct 1981, 26 (4), 656–663. 358 kB. https://doi.org/10.1520/JFS11419J #Methamphetamine NMR
Kram, TC. Analysis of illicit drug exhibits by hydrogen-1 nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Jul 1978, 23 (3), 456–469. 497 kB. https://doi.org/10.1520/JFS10692J #Methamphetamine NMR
Kram, TC. Analysis of impurities in illicit methamphetamine exhibits. III: Determination of methamphetamine and methylamine adulterant by nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Jul 1977, 22 (3), 508–514. 326 kB. https://doi.org/10.1520/JFS10621J #Methamphetamine NMR
Kram, TC; Kruegel, AV. The identification of impurities in illicit methamphetamine exhibits by gas chromatography/mass spectrometry and nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Jan 1977, 22 (1), 40–52. 444 kB. https://doi.org/10.1520/JFS10366J #VI GC,MS,NMR
Philp, M; Shimmon, R; Stojanovska, N; Tahtouh, M; Fu, S. Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials. Anal. Methods, 1 Jan 2013, 5 (20), 5402. 783 kB. https://doi.org/10.1039/c3ay40511g #Methamphetamine MS,NMR,IR,spot
Benington, F; Morin, RD. The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. Med. Chem., 1 Jul 1968, 11 (4), 896–897. 244 kB. https://doi.org/10.1021/jm00310a048 #2.7
Kostrzewa, RM. Selective neurotoxins, chemical tools to probe the mind: The first thirty years and beyond. Neurotox. Res., 1 Mar 1999, 1 (1), 3–25. 3.6 MB. https://doi.org/10.1007/BF03033336 #METH
Shulgin, AT. MDMA (Ecstasy) v. Methamphetamine. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Feb 2001.
Azoury, M; Zelkowicz, A; Goren, Z; Almog, J. Evaluation of ninhydrin analogues and other electron-deficient compounds as spray reagents for drugs on thin layer chromatograms. Microgram J., 1 Jan 2003, 1 (1–2), 23–31. 318 kB. spot
Shulgin, AT. Yaba (methamphetamine). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 9 Mar 2004.