- TMA-6
- ψ-TMA-2
- 2,4,6-Trimethoxyamphetamine
Shulgin, AT. Trimethoxylated amphetamine derivatives. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 14 Mar 2002.
Shulgin, AT. The six trimethoxyphenylisopropylamines (trimethoxyamphetamines). J. Med. Chem., 1 Jan 1966, 9 (3), 445–456. 362 kB. https://doi.org/10.1021/jm00321a058
Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413
Zaitsu, K; Katagi, M; Kamata, H; Kamata, T; Shima, N; Miki, A; Iwamura, T; Tsuchihashi, H. Discrimination and identification of the six aromatic positional isomers of trimethoxyamphetamine (TMA) by gas chromatography-mass spectrometry (GC-MS). J. Mass Spectrom., 1 Apr 2008, 43 (4), 528–534. 147 kB. https://doi.org/10.1002/jms.1347
Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. https://doi.org/10.1016/S0376-8716(99)00148-9
Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. https://doi.org/10.1038/221537a0 #XIII
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #TMA-6
Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. https://doi.org/10.1021/jm00144a009 other
Gallardo-Godoy, A; Fierro, A; McLean, TH; Castillo, M; Cassels, BK; Reyes-Parada, M; Nichols, DE. Sulfur-substituted α-alkyl phenethylamines as selective and reversible MAOA inhibitors: Biological activities, CoMFA analysis, and active site modeling. J. Med. Chem., 1 Jan 2005, 48 (7), 2407–2419. 901 kB. https://doi.org/10.1021/jm0493109 #30 MS,NMR
Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. https://doi.org/10.1016/S0968-0896(03)00437-1 #19
Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017 #31 NMR
Fenderson5555. The trimethoxylated amphetamines (TMA-x). , 9 Dec 2012. . Fenderson5555 7.7 MB.
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Chambers, JJ. Use of conformationally-restricted analogues and homology modeling to provide insight into the nature of the 5-HT2A receptor agonist binding site. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2002. 8.4 MB. MS,NMR,other
Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. https://doi.org/10.1002/omr.1270210611 #2,4,6-TMA NMR
Tsujikawa, K; Kanamori, T; Kuwayama, K; Miyaguchi, H; Iwata, YT; Inoue, H. Analytical profiles for 3,4,5-, 2,4,5-, and 2,4,6-trimethoxyamphetamine. Microgram J., 1 Jan 2006, 4 (1–4), 12–23. 162 kB. #TMA-6 GC,LC,MS,NMR,IR,spot
Antun, F; Smythies, JR; Benington, F; Morin, RD; Barfknecht, CF; Nichols, DE. Native fluorescence and hallucinogenic potency of some amphetamines. Experientia, 15 Jan 1971, 27 (1), 62–63. 248 kB. https://doi.org/10.1007/BF02137743 other
Benington, F; Morin, RD; Clark, LC. Mescaline analogs. I. 2,4,6-Trialkoxy-β-phenethylamines. J. Org. Chem., 1 Jan 1954, 19 (1), 11–16. 436 kB. https://doi.org/10.1021/jo01366a003 #IX
Pirisi, MA; Nieddu, M; Burrai, L; Carta, A; Briguglio, I; Baralla, E; Demontis, MP; Varoni, MV; Boatto, G. An LC-MS-MS method for quantitative analysis of six trimethoxyamphetamine designer drugs in rat plasma, and its application to a pharmacokinetic study. Forensic Toxicol., 1 Jul 2013, 31 (2), 197–203. 305 kB. https://doi.org/10.1007/s11419-012-0177-y
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #43 Rhodium.
Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0 #2,4,6-TMA
Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, 11 Feb 2011, 50, 63-82. 627 kB. Japanese, English abstract
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #3.15
Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #55
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Anderson, GM; Castagnoli, N; Kollman, PA. Quantitative structure-activity relationships in the 2,4,5-ring-substituted phenylisopropylamines. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 199–217. 623 kB.
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #22f
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #38
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #10u
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #LXVII
Adamowicz, P; Zuba, D. Discrimination among designer drug isomers by chromatographic and spectrometric methods. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 211–232. 1.1 MB.
Nagai, F; Nonaka, R; Kamimura, KSH. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur. J. Pharmacol., 22 Mar 2007, 559 (2), 132–137. 399 kB. https://doi.org/10.1016/j.ejphar.2006.11.075 #TMA-6
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #TMA-6
EMCDDA. New drugs in Europe, 2009, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2010. 321 kB. #10
Seto, T; Takahashi, M; Nagashima, M; Suzuki, J; Yasuda, I. The identifications and the aspects of the commercially available uncontrolled drugs purchased between Apr. 2003 and Mar. 2004. Ann. Rep. Tokyo Metr. Inst. P. H., 1 Jan 2005, 56 75–80. 1.2 MB. #TMA-6 MS,NMR,UV
Nieddu, M; Boatto, G; Pirisi, MA; Azara, E; Marchetti, M. LC–MS analysis of trimethoxyamphetamine designer drugs (TMA series) from urine samples. J. Chromatogr. B, 1 May 2008, 867 (1), 126–130. 305 kB. https://doi.org/10.1016/j.jchromb.2008.03.027 #TMA-6 LC,MS,NMR
Chapman, SJ. Novel Psychoactive Spectra: NMR of (mostly) Novel Psychoactive Substances. BLOTTER, 25 Jun 2018, 3 (2). https://doi.org/10.16889/isomerdesign-6 #TMA-6 NMR
Kawaguchi, K; Sugiyama, M; Morifuji, K; Noguchi, H; Akieda, T. Synthesis and analysis of TMA isomers. JCCL, 1 Oct 2007, (47), 73–77. 1.5 MB. #TMA-6 Japanese, English abstract LC,MS,NMR,IR,UV
Sáez-Briones, P; Hernández, A. MDMA (3,4-Methylenedioxymethamphetamine) Analogues as Tools to Characterize MDMA-Like Effects: An Approach to Understand Entactogen Pharmacology. Curr. Neuropharmacol., 1 Sep 2013, 11 (5), 521–534. 1.4 MB. https://doi.org/10.2174/1570159X11311050007 #TMA-6
Kikura-Hanajiri, R; Kawamura, M; Uchiyama, N; Ogata, J; Kamakura, H; Saisho, K; Goda, Y. Analytical data of designated substances (shitei-yakubutsu) controlled by the pharmaceutical affairs law in Japan, Part I: GC-MS and LC-MS. Yakugaku Zasshi, 1 Jun 2008, 128 (6), 971–979. 1.4 MB. https://doi.org/10.1248/yakushi.128.971 #TMA-6 Incorrect structures drawn. Corrected structures in errata page at end. GC,LC,MS,UV
Uchiyama, N; Kawamura, M; Kamakura, H; Kikura-Hanajiri, R; Goda, Y. Analytical data of designated substances (shitei-yakubutsu) controlled by the pharmaceutical affairs law in Japan, Part II: Color test and TLC. Yakugaku Zasshi, 1 Jan 2008, 128 (6), 981–987. 406 kB. https://doi.org/10.1248/yakushi.128.981 #TMA-6 TLC
Doi, K; Miyazawa, M; Fujii, H; Kojima, T. The analysis of the chemical drugs among structural isomer. Yakugaku Zasshi, 1 Sep 2006, 126 (9), 815–823. 371 kB. https://doi.org/10.1248/yakushi.126.815 #TMA-6 GC,LC,MS,NMR,IR,TLC
Bailey, K; Legault, D. Carbon-13 nuclear magnetic resonance spectra of trimethoxyamphetamines—A comparison of predicted with experimental results. J. Forensic Sci., 1 Apr 1981, 26 (2), 368–372. 321 kB. https://doi.org/10.1520/JFS11370J #2,4,6-TMA NMR
Bailey, K; Legault, D. The use of carbon-13 nuclear magnetic resonance spectra in the identification and authentication of monomethoxyamphetamines and dimethoxyamphetamines. J. Forensic Sci., 1 Jan 1981, 26 (1), 27–34. 366 kB. https://doi.org/10.1520/JFS11326J #2,4,6-triOCH3 NMR
Benington, F; Morin, RD. The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. Med. Chem., 1 Jul 1968, 11 (4), 896–897. 244 kB. https://doi.org/10.1021/jm00310a048 #2.26
Shulgin, AT. Psychotomimetic agents related to the catecholamines. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 14–19. 782 kB. https://doi.org/10.1080/02791072.1969.10524409 #XIIe
Clare, BW. Structure-activity correlations for psychotomimetics. 1. Phenylalkylamines: electronic, volume, and hydrophobicity parameters. J. Med. Chem., 1 Feb 1990, 33 (2), 687–702. 2.8 MB. https://doi.org/10.1021/jm00164a036 #43
Shulgin, AT. Mescaline: the chemistry and pharmacology of its analogs. Lloydia, 1 Jan 1973, 36 (1), 46–58. 5.6 MB. #17
Glennon, RA; Rosecrans, JA. Indolealkylamine and phenalkylamine hallucinogens: A brief overview. Neurosci. Biobehav. Rev., 1 Jan 1982, 6 (4), 489–497. 895 kB. https://doi.org/10.1016/0149-7634(82)90030-6 #8n
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #14
Clare, BW. The frontier orbital phase angles: Novel QSAR descriptors for benzene derivatives, applied to phenylalkylamine hallucinogens. J. Med. Chem., 24 Sep 1998, 41 (20), 3845–3856. 239 kB. https://doi.org/10.1021/jm980144c #26