Exploring 3,4-DMA. To explore a different substance…

Names:
3,4-DMA · DMA · EA-1316 · 3,4-Dimethoxyamphetamine
IUPAC name:
1-(3,4-Dimethoxyphenyl)propan-2-amine
ID: 55 · Formula: C11H17NO2 · Molecular weight: 195.258
InChI: InChI=1S/C11H17NO2/c1-8(12)6-9-4-5-10(13-2)11(7-9)14-3/h4-5,7-8H,6,12H2,1-3H3

Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Analysis, 31 Aug 2017, n/a-n/a. 840 kB. http://dx.doi.org/10.1002/dta.2292

Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. http://dx.doi.org/10.1002/omr.1270210611

Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. http://dx.doi.org/10.1021/jm00295a007

Antun, F; Smythies, JR; Benington, F; Morin, RD; Barfknecht, CF; Nichols, DE. Native fluorescence and hallucinogenic potency of some amphetamines. Experientia, 15 Jan 1971, 27 (1), 62–63. 248 kB. http://dx.doi.org/10.1007/BF02137743

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. http://dx.doi.org/10.1016/0014-2999(81)90106-0

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. http://dx.doi.org/10.1016/j.bmc.2003.10.027

Bailey, K; Legauld, D; Verner, D. Spectroscopic and chromatographic identification of dimethoxyamphetamines. J. Assoc. Off. Anal. Chem., 1974, 57 (1), 70–78. 426 kB.

Shannon, M; Battaglia, G; Glennon, RA; Titeler, M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur. J. Pharmacol., 15 Jun 1984, 102 (1), 23–29. 461 kB. http://dx.doi.org/10.1016/0014-2999(84)90333-9

Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. http://dx.doi.org/10.1016/S0041-008X(73)80016-X

Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., Aug 1975, 47 (9), 841A–844a. 1.6 MB. http://dx.doi.org/10.1021/ac60359a050

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. http://dx.doi.org/10.1021/jm00177a017

Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. http://dx.doi.org/10.1016/S0968-0896(03)00437-1

Butterick, JR; Unrau, AM. Studies on theoretical psychotogens. Synthesis of O-methylated analogs of catecholamine neurotransmitters and metabolic precursors. Can. J. Chem., 1 Jan 1974, 52 (16), 2873–2879. 305 kB. http://dx.doi.org/10.1139/v74-418

Barfknecht, CF; Nichols, DE. Effects of S-(+)- and R-(-)-3,4,dimethoxyphenylisopropylamines in the rat. J. Med. Chem., 1 Jan 1972, 15 (1), 109–110. 295 kB. http://dx.doi.org/10.1021/jm00271a037

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. http://dx.doi.org/10.1016/j.neuropharm.2011.01.017

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. http://dx.doi.org/10.1016/S0006-2952(97)00405-X

Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. http://dx.doi.org/10.1038/221537a0

Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1970; pp 21–41. 8.6 MB.

Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. http://dx.doi.org/10.1021/jm00144a009

Nichols, DE; Barfknecht, CF; Rusterholz, DB; Benington, F; Morin, RD. Asymmetric synthesis of psychotomimetic phenylisopropylamines. J. Med. Chem., 1 Jan 1973, 16 (5), 480–483. 515 kB. http://dx.doi.org/10.1021/jm00263a013

Butterick, JR. Synthesis of O-transmethylated catecholamines and psychodysleptic β-phenylisopropylamines. Ph. D. Thesis, Simon Faser University, Burnaby, BC, Canada, 11 Mar 1975. 6.1 MB. External examiner: A. T. Shulgin!

DMAOH
DMMA
N,N-Me-DMA
6622
DMPA
DMBZ
DMMAOH
N-MeO-3,4-DMA
3,4-DMPEA · DMPEA
4C-DMPEA
α-Carboxy-DMPEA
β-HO-DMA
TMA-3
2,3,4-DOB
2-Me-3,4-DOM
2,3,4-DOET
PMA
2135
3-Br-PMA · 3-Br-4-MA
3-I-PMA
HMA
EMA
3-MA · 3-Methoxyamphetamine
MMA
4-Br-3-MA
2333
4-Cl-3-MA
MHA
3-MTFMA
BZOMA
IPOMA
POMA
TMA
5-Me-3,4-DOM
MDA
7-Me-MDA · EIDA
IDA
5-APDI
F2-MDA
BF6AP · 6-APDB
BF5AP · 5-APDB
NAP · Naphthylaminopropane
6-APT
6-APB
5-APB
5-API · 5-IT
IBF5AP
EDA
6-MeO-NAP
6-EtO-NAP
6-PrO-NAP
6-BuO-NAP
6-BnO-NAP
6-MeS-NAP
6-IT
Methyleugenol
1022
Methylisoeugenol
homo-DMA
3,4-DMCPA
3,4-Dimethoxycathinone
3,4-DMP2P
homo-3,4-DMPEA
2C-D
DESOXY
2,4-DMA
2,5-DMA
MEPEA
3,5-DMA
2,3-DMA
2,6-DMA
MM-GEA
N-Me-2,5-DMPEA · 25H-NMe
2,5-MH-MMA
2-DES-Me-DOM · 2-DM-DOM
5-DES-Me-DOM · 5-DM-DOM
4-Me-2,6-DMPEA · ψ-2C-D
2407
4-Ethoxynorephedrine
BO3MM
BO3ME
BO3MA
BO3E
N-Me-DMPEA-2
2,3-EMPEA
N-Me-DMPEA-3
2,4-EMPEA
Coryneine
N,N-Me-DHA
DHEA
MHMA
MH-α-Et-PEA
HMMA
β-Me-DMPEA
N-Me-DMPEA
EMPEA
β,2-HO-5,N-DMeA
β-HO-N-Me-2-M-5-MePEA
β-HO-2-M-5-MeA
N,N-Me-2,5-HMPEA
β-Me-2,5-DMPEA
N-Me-3,5-DMPEA
N-Me-2,6-DMPEA
6-Me-2,4-DMPEA
iso-2C-D
HMP
homo-3,4-DMPEA
N-MeO-PMA
DMAOH
DMMA
N,N-Me-DMA
6622
DMPA
DMBZ
DMMAOH
N-MeO-3,4-DMA
3,4-DMPEA · DMPEA
4C-DMPEA
α-Carboxy-DMPEA
β-HO-DMA
TMA-3
2,3,4-DOB
2-Me-3,4-DOM
2,3,4-DOET
PMA
2135
3-Br-PMA · 3-Br-4-MA
3-I-PMA
HMA
EMA
3-MA · 3-Methoxyamphetamine
MMA
4-Br-3-MA
2333
4-Cl-3-MA
MHA
3-MTFMA
BZOMA
IPOMA
POMA
TMA
5-Me-3,4-DOM
MDA
7-Me-MDA · EIDA
IDA
5-APDI
F2-MDA
BF6AP · 6-APDB
BF5AP · 5-APDB
NAP · Naphthylaminopropane
6-APT
6-APB
5-APB
5-API · 5-IT
IBF5AP
EDA
6-MeO-NAP
6-EtO-NAP
6-PrO-NAP
6-BuO-NAP
6-BnO-NAP
6-MeS-NAP
6-IT
Methyleugenol
1022
Methylisoeugenol
homo-DMA
3,4-DMCPA
3,4-Dimethoxycathinone
3,4-DMP2P
homo-3,4-DMPEA
2C-D
DESOXY
2,4-DMA
2,5-DMA
MEPEA
3,5-DMA
2,3-DMA
2,6-DMA
MM-GEA
N-Me-2,5-DMPEA · 25H-NMe
2,5-MH-MMA
2-DES-Me-DOM · 2-DM-DOM
5-DES-Me-DOM · 5-DM-DOM
4-Me-2,6-DMPEA · ψ-2C-D
2407
4-Ethoxynorephedrine
BO3MM
BO3ME
BO3MA
BO3E
N-Me-DMPEA-2
2,3-EMPEA
N-Me-DMPEA-3
2,4-EMPEA
Coryneine
N,N-Me-DHA
DHEA
MHMA
MH-α-Et-PEA
HMMA
β-Me-DMPEA
N-Me-DMPEA
EMPEA
β,2-HO-5,N-DMeA
β-HO-N-Me-2-M-5-MePEA
β-HO-2-M-5-MeA
N,N-Me-2,5-HMPEA
β-Me-2,5-DMPEA
N-Me-3,5-DMPEA
N-Me-2,6-DMPEA
6-Me-2,4-DMPEA
iso-2C-D
HMP
homo-3,4-DMPEA
N-MeO-PMA
13 December 2017 · Creative Commons BY-NC-SA ·