- Psilocin
- CX-59
- 3-[2-(Dimethylamino)ethyl]-4-indolol
- N,N-Dimethyl-4-hydroxytryptamine
- 4-HO-DMT
- 4-Indolol, 3-[2-(dimethylamino)ethyl]
- PAL-153
- PSOH
- Tryptamine, 4-hydroxy-N,N-dimethyl
Shulgin, AT. Drug testing for mushrooms. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 1 Dec 2004.
Shulgin, AT. Psilocybe mushroom extractions. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 5 Mar 2003.
Repke, DB; Ferguson, WJ; Bates, DK. Psilocin analogs II. Synthesis of 3-[2-(dialkylamino)ethyl]-, 3-[2-(N-methyl-N-alkylamino)ethyl]-, and 3-[2-(cycloalkylamino)ethyl]indol-4-ols. J. Heterocycl. Chem., 1 Jan 1981, 18 (1), 175–179. 368 kB. https://doi.org/10.1002/jhet.5570180131
Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #Psilocin
Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. https://doi.org/10.1016/j.bmc.2008.02.033 #11
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Meyers-Riggs, B. Biosynthesis of 4-substituted tryptamine derivatives. countyourculture, countyourculture: rational exploration of the underground, 17 Feb 2012.
Meyers-Riggs, B. 4-Hydroxy tryptamines. countyourculture, countyourculture: rational exploration of the underground, 7 Jul 2012.
Meyers-Riggs, B. Grid biosynthesis of psilocybin. countyourculture, countyourculture: rational exploration of the underground, 5 Dec 2011.
Gessner, PK; Godse, DD; Krull, AH; McMullan, JM. Structure-activity relationships among 5-methoxy-N:N-dimethyltryptamine, 4-hydroxy-N:N-dimethyltryptamine (psilocin) and other substituted tryptamines. Life Sci., 1 Mar 1968, 7 (5), 267–277. 362 kB. https://doi.org/10.1016/0024-3205(68)90200-2
Wurst, M; Kysilka, R; Flieger, M. Psychoactive tryptamines from Basidiomycetes. Folia Microbiol., 1 Feb 2002, 47 (1), 3–27. 3.1 MB. https://doi.org/10.1007/BF02818560
Peroutka, SJ; McCarthy, BG; Guan, X. 5-Benzyloxytryptamine: a relatively selective 5-hydroxytryptamine1D/1B agent. Life Sci., 1 Jan 1991, 49 (6), 409–418. 556 kB. https://doi.org/10.1016/0024-3205(91)90582-V
Gross, ST. Detecting psychoactive drugs in the developmental stages of mushrooms. J. Forensic Sci., 1 May 2000, 45 (3), 527–537. 6.2 MB. https://doi.org/10.1520/JFS14725J
Gross, ST. Psychotropic drugs in developmental mushrooms: A case study review. J. Forensic Sci., 1 Nov 2002, 47 (6), 1298-1302. 369 kB. https://doi.org/10.1520/JFS15564J
Glennon, RA; Gessner, PK. Serotonin receptor binding affinities of tryptamine analogues. J. Med. Chem., 1 Jan 1979, 22 (4), pp 428–432. 731 kB. https://doi.org/10.1021/jm00190a014
Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001
Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255
McKenna, DJ. Monoamine oxidsase inhibitors in Amazonian hallucinogenic plants: Ethnobotanical, phytochemical, and pharmacological investigations. Ph. D. Thesis, University of British Columbia, BC, Canada, 26 Apr 1984. 12.2 MB.
Sard, H; Kumaran, G; Morency, C; Roth, BL; Toth, BA; Hec, P; Shuster, L. SAR of psilocybin analogs: Discovery of a selective 5-HT2C agonist. Bioorg. Med. Chem. Lett., 1 Jan 2005, 15 (20), 4555–4599. 134 kB. https://doi.org/10.1016/j.bmcl.2005.06.104
Gartz, J. Extraction and analysis of indole derivatives from fungal biomass. J. Basic. Microbiol., 1 Jan 1994, 34 (1), 17–22. 614 kB. https://doi.org/10.1002/jobm.3620340104
Hofmann, A; Heim, R; Brack, A; Kobel, H; Frey, A; Ott, H; Petrzilka, T; Troxler, F. Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv. Chim. Acta, 1 Jan 1959, 42 (5), 1557–1572. 1.1 MB. https://doi.org/10.1002/hlca.19590420518
Troxler, F; Seemann, F; Hofmann, A. Abwandlungsprodukte von Psilocybin und Psilocin. 2. Mitteilung über synthetische Indolverbindungen. Helv. Chim. Acta, 1 Jan 1959, 42 (6), 2073–2103. 1.6 MB. https://doi.org/10.1002/hlca.19590420638
Chilton, WS; Bigwood, J; Jensen, RE. Psilocin, Bufotenine and serotonin: Historical and biosynthetic observations. J. Psychoactive Drugs, 1 Jan 1979, 11 (1–2), 61–69. 9.5 MB. https://doi.org/10.1080/02791072.1979.10472093
McKenna, DJ; Repke, DB; Lo, L; Peroutka, SJ. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 1 Mar 1990, 29 (3), 191–198. 679 kB. https://doi.org/10.1016/0028-3908(90)90001-8
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Migliaccio, GP; Shieh, TN; Byrn, SR; Hathaway, BA; Nichols, DE. Comparison of solution conformational preferences for the hallucinogens bufotenin and psilocin using 360-MHz proton NMR spectroscopy. J. Med. Chem., 1 Feb 1981, 24 (2), 206–209. 564 kB. https://doi.org/10.1021/jm00134a016
Morris, H. Blood Spore: Of Murder and Mushrooms. Harper’s Magazine, 1 Jul 2013, 41–56. 13.8 MB.
Sarwar, M; McDonald, JL. A rapid extraction and GC/MS methodology for the identification of psilocyn in mushroom/chocolate concoctions. Microgram J., 1 Jul 2003, 1 (3–4), 177–183. 211 kB.
Rodriguez-Cruz, SE. Analysis and characterization of psilocybin and psilocin using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) with collision-induced-dissociation (CID) and source-induced-dissociation (SID). Microgram J., 1 Jul 2005, 3 (3–4), 175–182. 560 kB.
Wiseman-Distler, MH; Sourkes, TL. The effect of 4-hydroxyindoles on the metabolism of 5-hydroxytryptamine (serotonin). Ann. N. Y. Acad. Sci., 1 Jan 1962, 96, 142–151. 458 kB. https://doi.org/10.1111/j.1749-6632.1962.tb50109.x
Pellegrini, M; Rotolo, MC; Marchei, E; Pacifici, R; Saggio, F; Pichini, S. Magic truffles or philosopher’s stones: a legal way to sell psilocybin? Drug Test. Analysis, 1 Mar 2013, 5 (3), 182–185. 219 kB. https://doi.org/10.1002/dta.1400
Blough, BE; Landavazo, A; Decker, AM; Partilla, JS; Baumann, MH; Rothman, RB. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 1 Oct 2014, 231 (21), 4135-4144. 298 kB. https://doi.org/10.1007/s00213-014-3557-7
Heim, R; Genest, K; Hughes, DW; Belec, G. Botanical and chemical characterisation of a forensic mushroom specimen of the genus psilocybe. J. Forensic Sci. Soc., 1 Jul 1966, 6 (4), 192–201. 2.1 MB. https://doi.org/10.1016/S0015-7368(66)70336-3
Meyer, MR; Caspar, A; Brandt, SD; Maurer, HH. A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches. Anal. Bioanal. Chem., 1 Jan 2014, 406 (1), 225–237. 457 kB. https://doi.org/10.1007/s00216-013-7425-9 #4-HO-DMT LC,MS
Fricke, J; Blei, F; Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed., 20 Aug 2017, 56 (40), 12352-12355. 1.8 MB. https://doi.org/10.1002/anie.201705489
Brandt, SD; Martins, CPB. Analytical methods for psychoactive N,N-dialkylated tryptamines. Trends Anal. Chem., 1 Sep 2010, 29 (8), 858–869. 446 kB. https://doi.org/10.1016/j.trac.2010.04.008 #17
Fricke, J; Sherwood, A; Kargbo, R; Orry, A; Blei, F; Naschberger, A; Rupp, B; Hoffmeister, D. Enzymatic route toward 6‐methylated baeocystin and psilocybin. ChemBioChem, 31 May 2019, n/a. 3.2 MB. https://doi.org/10.1002/cbic.201900358 #4 NMR
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #59
Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9
Anastos, N; Barnett, N; Lewis, S; Gathergood, N; Scammells, P; Sims, D. Determination of psilocin and psilocybin using flow injection analysis with acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection respectively. Talanta, 15 Aug 2005, 67 (2), 354-359. 111 kB. https://doi.org/10.1016/j.talanta.2004.11.038 #5
Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Analysis, 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #3
Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)
Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., , 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001
López-Giménez, JF; González-Maeso, J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 45-73. 712 kB. https://doi.org/10.1007/7854_2017_478
McKenna, D; Riba, J. New world tryptamine hallucinogens and the neuroscience of ayahuasca. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2016; pp 283-311. 749 kB. https://doi.org/10.1007/7854_2016_472
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466
Martin, R. Nachweis und Bestimmung halluzinogener Wirkstoffe und ihrer Metaboliten in Körperflüssigkeiten und Haaren. Toxichem Krimtech, 1 Jan 2015, 82 (2), 123–127. 448 kB.
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42
Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #42
Beug, MW; Bigwood, J. Quantitative analysis of psilocybin and psilocin and Psilocybe baecystis (Singer and Smith) by high-performance liquid chromatography and by thin-layer chromatography. J. Chromatogr. A, 27 Mar 1981, 207 (3), 379-385. 514 kB. https://doi.org/10.1016/S0021-9673(00)88741-5 #II
Tylš, F; Páleníček, T; Horáček, J. Psilocybin – Summary of knowledge and new perspectives. Eur. Neuropsychopharmacol., 1 Mar 2014, 24 (3), 342–356. 710 kB. https://doi.org/10.1016/j.euroneuro.2013.12.006
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, ; pp 74–91. 51 kB.
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, ; Vol. 55 (3), pp 3–29. 29.7 MB. #4f
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, ; pp 67–137. 6.3 MB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., ; pp 1109–1137. 4.7 MB. #29e
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, ; Vol. 4, pp 59–146. 3.1 MB. #XXX
Nichols, DE. Potential psychotomimetics: Bromomethoxyamphetamines and structural congeners of lysergic acid. Ph. D. Thesis, University of Iowa, Iowa City, IA, 1 May 1973. 13.0 MB. #3
Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, . 3.9 MB. #Psilocin
Kamata, T; Nishikawa, M; Katagi, M; Tsuchihashi, H. Liquid chromatography-mass spectrometric and liquid chromatography-tandem mass spectrometric determination of hallucinogenic indoles psilocin and psilocybin in “Magic mushroom” samples. J. Forensic Sci., 5 Jan 2005, 50 (2), 1–5. 155 kB. https://doi.org/10.1520/JFS2004276 #PC LC,MS
Grieshaber, AF; Moore, KA; Levine, B. The detection of psilocin in human urine. J. Forensic Sci., 1 May 2001, 46 (3), 627–630. 286 kB. https://doi.org/10.1520/JFS15014J #Psilocin
Rothman, RB; Partilla, JS; Baumann, MH; Lightfoot-Siordia, C; Blough, BE. Studies of the biogenic amine transporters. 14. Identification of low-efficacy “partial” substrates for the biogenic amine transporters. J. Pharmacol. Exp. Ther., 1 Apr 2012, 341 (1), 251–262. 2.2 MB. https://doi.org/10.1124/jpet.111.188946 #PAL-153
Barry, TL; Petzinger, G; Zito, SW. GC/MS comparison of the West Indian aphrodisiac “Love Stone” to the Chinese medication “Chan Su”: Bufotenine and related bufadienolides. J. Forensic Sci., 1 Nov 1996, 41 (6), 1068–1073. 411 kB. https://doi.org/10.1520/JFS14052J #Psilocin MS
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 n/a. 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #Psilocin
Geiger, HA; Wurst, MG; Daniels, RN. DARK classics in chemical neuroscience: Psilocybin. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2438–2447. 580 kB. https://doi.org/10.1021/acschemneuro.8b00186 #2
Nichols, DE; Frescas, SP. Improvements to the synthesis of psilocybin and a facile method for preparing the O-acetyl prodrug of psilocin. Synthesis, 1 Jun 1999, 1999, 935–938. 1.5 MB. https://doi.org/10.1055/s-1999-3490 #5 NMR
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S2 Tryptamines Psilocin
Glennon, RA; Young, R; Rosecrans, JA; Kallman, MJ. Hallucinogenic agents as discriminative stimuli: A correlation with serotonin receptor affinities. Psychopharmacology, 1 May 1980, 68 (2), 155–158. 395 kB. https://doi.org/10.1007/BF00432133 #4-OH DMT
Fricke, J; Lenz, C; Wick, J; Blei, F; Hoffmeister, D. Production options for psilocybin: Making of the magic. Chem. Eur. J., 18 Jan 2019, 25 (4), 897–903. 1.8 MB. https://doi.org/10.1002/chem.201802758 #2
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #13 In German. MS,NMR,IR
Blei, F; Baldeweg, F; Fricke, J; Hoffmeister, D. Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions. Chem. Eur. J., 17 Jul 2018, 24 (40), 10028–10031. 969 kB. https://doi.org/10.1002/chem.201801047 #3 LC,MS,NMR
Yasuoka, T; Muroi, H; Okazaki, R; Matsumoto, Y; Terauchi, Y; Sasatani, T. Analysis of tryptamine group compounds. JCCL, 1 Jan 2003, (43), 63–69. 151 kB. #Psilocin Japanese, English abstract LC,MS,NMR,IR,UV
Kang, S; Johnson, CL; Green, JP. Theoretical studies on the conformations of psilocin and mescaline. Mol. Pharmacol., 1 Sep 1973, 9 (5), 640–648. 6.9 MB. #Psilocin
Casale, JF. An aqueous-organic extraction method for the isolation and identification of psilocin from hallucinogenic mushrooms. J. Forensic Sci., 1 Jan 1985, 30 (1), 247–250. 288 kB. https://doi.org/10.1520/JFS10989J #Psilocin MS,IR