Exploring 2C-I. To explore a different substance…

Names:
2C-I · 25I · Cimbi-88 · 2,5-Dimethoxy-4-iodophenethylamine · 4-Iodo-2,5-dimethoxyphenethylamine
IUPAC name:
2-(4-Iodo-2,5-dimethoxyphenyl)ethan-1-amine
ID: 33 · Formula: C10H14INO2 · Molecular weight: 307.128
InChI: InChI=1S/C10H14INO2/c1-13-9-6-8(11)10(14-2)5-7(9)3-4-12/h5-6H,3-4,12H2,1-2H3

Parrish, JC; Braden, MR; Gundy, E; Nichols, DE. Differential phospholipase C activation by phenylalkylamine serotonin 5-HT2A receptor agonists. J. Neurochem., 1 Dec 2005, 95 (6), 1575–1584. 301 kB. http://dx.doi.org/10.1111/j.1471-4159.2005.03477.x

Anon. Report on the risk assessment of 2C-I, 2C-T-2 and 2C-T-7, European Monitoring Centre for Drugs and Drug Addiction, May 2004. 1.2 MB.

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci., 2008, 54 (1), 89–96. 1.9 MB. http://dx.doi.org/10.1248/jhs.54.89

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. http://dx.doi.org/10.1016/j.forsciint.2011.11.003

McGrane, O; Simmons, J; Jacobsen, E; Skinner, C. Alarming trends in a novel class of designer drugs. J. Clinic. Toxicol., 1 Nov 2011, 1 (2). 775 kB. http://dx.doi.org/10.4172/2161-0495.1000108

Villalobos, CA; Bull, P; Sáez, P; Cassels, BK; Huidobro-Toro, JP. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br. J. Pharmacol., 1 Apr 2004, 141 (7), 1167–1174. 271 kB. http://dx.doi.org/10.1038/sj.bjp.0705722

Kanai, K; Takekawa, K; Kumamoto, T; Ishikawa, T; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol., 1 Nov 2008, 26 (2), 6–12. 406 kB. http://dx.doi.org/10.1007/s11419-008-0041-2

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Meyer, MR; Robert, A; Maurer, HH. Toxicokinetics of novel psychoactive substances: Characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs. Toxicol. Lett., 5 Jun 2014, 227 (2), 124–128. 865 kB. http://dx.doi.org/10.1016/j.toxlet.2014.03.010

Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. http://dx.doi.org/10.1007/s11064-014-1253-y

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. BLOTTER, 1 Aug 2015, 1 (1). 2.6 MB. http://dx.doi.org/10.16889/isomerdesign-1 Open access DOI

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. Supplementary Data. BLOTTER, 1 Aug 2015, 1 (1). 11.9 MB. http://dx.doi.org/10.16889/isomerdesign-1-supp Open access DOI

Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Current Topics in Behavioral Neurosciences; , 2016; pp 1–29. 826 kB. http://dx.doi.org/10.1007/7854_2016_64

Theobald, DS. The 2C-series—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 18 Dec 2006. 1.4 MB.

Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB.

Braun, U; Shulgin, AT; Braun, G; Sargent, T. Synthesis and body distribution of several iodine-131-labeled central nervous system active drugs. J. Med. Chem., 1 Jan 1977, 20 (12), 1543–1546. 1.1 MB. http://dx.doi.org/10.1021/jm00222a001

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB.

Ettrup, A; Hansen, M; Santini, MA; Paine, J; Gillings, N; Palner, M; Lehel, S; Herth, MM; Madsen, J; Kristensen, JL; Begtrup, M; Knudsen, GM. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur. J. Nucl. Med. Mol. Imaging, 1 Apr 2011, 38 (4), 681–693. 752 kB. http://dx.doi.org/10.1007/s00259-010-1686-8

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. http://dx.doi.org/10.1002/cmdc.200800133

Meyers-Riggs, B. The halogenated 2Cs. countyourculture, countyourculture: rational exploration of the underground, 29 Sep 2010.

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. http://dx.doi.org/10.1124/jpet.106.117507

Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. http://dx.doi.org/10.1038/sj.bjp.0704747

Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. http://dx.doi.org/10.1124/mol.107.039255

Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.

Halberstadt, AL; Geyer, MA. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology, 1 Feb 2014, 77, 200–207. 1.4 MB. http://dx.doi.org/10.1016/j.neuropharm.2013.08.025

Johnson, MP; Mathis, CA; Shulgin, AT; Hoffman, AJ; Nichols, DE. [125I]-2-(2,5-Dimethoxy-4-iodophenyl)aminoethane ([125I]-2C-I) as a label for the 5-HT2 receptor in rat frontal cortex. Pharmacol. Biochem. Behav., 1 Jan 1990, 35 (1), 211–217. 724 kB. http://dx.doi.org/10.1016/0091-3057(90)90228-A

Glennon, RA; Kier, LB; Shulgin, AT. Molecular connectivity analysis of hallucinogenic mescaline analogs. J. Pharm. Sci., 1 Jan 1979, 68 (7), 906–907. 252 kB. http://dx.doi.org/10.1002/jps.2600680733

Braden, MR; Parrish, JC; Naylor, JC; Nichols, DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol. Pharmacol., 1 Jan 2006, 70 (6), 1956–1964. 361 kB. http://dx.doi.org/10.1124/mol.106.028720

25I-NBOH
25I-NB2OMe · 25I-NBOMe
25I-NNap
INBMDO · 25I-NBMD
25I-NMeFur
25I-NMeThiop
25I-NMePyr
25I-NBCN
25I-NBAm
25I-NMeInd
25I-NNap2
25I-NBMeOH
25I-NDHF
25I-N2Nap3OH
25I-N1Nap2OH
25I-NBOH45MD
25I-N2Nap1OH
25I-NB34MD
25I-NBpTFM
25I-NBTFM
25I-NBF
25I-NB4F · 25I-NBpF
25I-NB
N4MT3M-2C-I
N3MT2M-2C-I
25I-NEPOMe
25I-NB3OMe
25I-NB4OMe
25I-NB4B
25I-NB3B
25I-NBBr · 25I-NB2B
DOI
4C-DOI
BOI
2CI-2ETO
2C-I-2-iPrO
2C-B
2C-C
2C-D
2C-E
2C-F
2C-H
2C-N
2C-O-4
2C-P
2C-SE
2C-T
2C-T-2
2C-T-4
2C-T-7
2C-T-8
2C-T-9
2C-T-13
2C-T-15
2C-T-17
2C-T-21
TMPEA
2C-CN
2C-CA · 2C-COOH
2C-TFM
2C-O-2
2C-O-7
2C-O-19
2C-SE-2
2C-SE-4
2C-SE-7
2C-SE-21
2C-TE
2C-T-10
2C-T-11
2C-T-12
2C-T-14
2C-T-5
2C-T-16
2C-T-6
2C-T-19
2C-T-21.5
2C-T-22
2C-T-18
2C-T-23
2C-YN
2C-pEtOH
2C-pKet
2C-T-3
2C-T-25
2C-T-27
2C-T-28
2C-T-30
2C-T-31
2C-T-32
2C-T-33
2C-VI
2C-BI-1
2C-BI-2
2C-BI-3
2C-BI-4
2C-BI-5
2C-BI-6
2C-BI-7
2C-BI-8
2C-BI-9
2C-BI-10
2C-BI-11
2C-BI-12
2326
2324
2327
2C-IP
2C-EF
2C-NH
2C-HM
2C-IB
2C-TFE
2C-O-22
2C-O-21.5
2C-O-21
2C-A
IBOX
738
ψ-2C-I
25I-NBOH
25I-NB2OMe · 25I-NBOMe
25I-NNap
INBMDO · 25I-NBMD
25I-NMeFur
25I-NMeThiop
25I-NMePyr
25I-NBCN
25I-NBAm
25I-NMeInd
25I-NNap2
25I-NBMeOH
25I-NDHF
25I-N2Nap3OH
25I-N1Nap2OH
25I-NBOH45MD
25I-N2Nap1OH
25I-NB34MD
25I-NBpTFM
25I-NBTFM
25I-NBF
25I-NB4F · 25I-NBpF
25I-NB
N4MT3M-2C-I
N3MT2M-2C-I
25I-NEPOMe
25I-NB3OMe
25I-NB4OMe
25I-NB4B
25I-NB3B
25I-NBBr · 25I-NB2B
DOI
4C-DOI
BOI
2CI-2ETO
2C-I-2-iPrO
2C-B
2C-C
2C-D
2C-E
2C-F
2C-H
2C-N
2C-O-4
2C-P
2C-SE
2C-T
2C-T-2
2C-T-4
2C-T-7
2C-T-8
2C-T-9
2C-T-13
2C-T-15
2C-T-17
2C-T-21
TMPEA
2C-CN
2C-CA · 2C-COOH
2C-TFM
2C-O-2
2C-O-7
2C-O-19
2C-SE-2
2C-SE-4
2C-SE-7
2C-SE-21
2C-TE
2C-T-10
2C-T-11
2C-T-12
2C-T-14
2C-T-5
2C-T-16
2C-T-6
2C-T-19
2C-T-21.5
2C-T-22
2C-T-18
2C-T-23
2C-YN
2C-pEtOH
2C-pKet
2C-T-3
2C-T-25
2C-T-27
2C-T-28
2C-T-30
2C-T-31
2C-T-32
2C-T-33
2C-VI
2C-BI-1
2C-BI-2
2C-BI-3
2C-BI-4
2C-BI-5
2C-BI-6
2C-BI-7
2C-BI-8
2C-BI-9
2C-BI-10
2C-BI-11
2C-BI-12
2326
2324
2327
2C-IP
2C-EF
2C-NH
2C-HM
2C-IB
2C-TFE
2C-O-22
2C-O-21.5
2C-O-21
2C-A
IBOX
738
ψ-2C-I
21 October 2017 · Creative Commons BY-NC-SA ·