Exploring 3-Methoxyamphetamine. To explore a different substance…

Names:
3-MA
MMA
3-MeO-AMP
3-Methoxyamphetamine
IUPAC name:
1-(3-Methoxyphenyl)propan-2-amine
268 · C10H15NO · 165.232
InChI=1S/C10H15NO/c1-8(11)6-9-4-3-5-10(7-9)12-2/h3-5,7-8H,6,11H2,1-2H3
VEJWNIYARKAHFI-UHFFFAOYSA-N This stereoisomer Any stereoisomer
COc1cccc(c1)CC(N)C

Dal Cason, TA. A re-examination of the mono-methoxy positional ring isomers of amphetamine, methamphetamine and phenyl-2-propanone. Forensic Sci. Int., 1 Jan 2001, 119 (3), 168–194. 678 kB. https://doi.org/10.1016/S0379-0738(00)00425-4

Lyon, RA; Titeler, M; Seggel, MR; Glennon, RA. Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens. Eur. J. Pharmacol., 19 Jan 1988, 145 (3), 291–297. 533 kB. https://doi.org/10.1016/0014-2999(88)90432-3

Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. https://doi.org/10.1021/jm00144a009

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017 #8 NMR

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003

Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. https://doi.org/10.1002/omr.1270210611

Foster, BC; Litster, DL; Lodge, BA. Biotransformation of 2-, 3-, and 4-methoxyamphetamines by Cunninghamella echinulata. Xenobiotica, 1991, 21 (10), 1337–1346. 553 kB. https://doi.org/10.3109/00498259109043208

Warren, RJ; Begosh, PP; Zarembo, JE. Identification of amphetamines and related sympathomimetic amines. J. Assoc. Off. Anal. Chem., 1971, 54 (5), 1179–1191. 3.9 MB.

Antun, F; Smythies, JR; Benington, F; Morin, RD; Barfknecht, CF; Nichols, DE. Native fluorescence and hallucinogenic potency of some amphetamines. Experientia, 15 Jan 1971, 27 (1), 62–63. 248 kB. https://doi.org/10.1007/BF02137743

Katagi, M; Tsuchihashi, H. Update on clandestine amphetamines and their analogues recently seen in Japan. J. Health Sci., 2002, 48 (1), 14–21. 181 kB. https://doi.org/10.1248/jhs.48.14

Bailey, K; Beckstead, HD; Legault, D; Verner, D. Identification of 2-, 3-, and 4-methoxyamphetamines and 2-, 3-, and 4-methylamphetamines. J. Assoc. Off. Anal. Chem., 1974, 57 (5), 1134–1143. 2.6 MB.

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0 #3-OMe-PIA

Glennon, RA; McKenney, JD; Lyon, RA; Titeler, M. 5-HT1 and 5-HT2 binding characteristics of 1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane analogs. J. Med. Chem., 1 Feb 1986, 29 (2), 194–199. 919 kB. https://doi.org/10.1021/jm00152a005 #4 NMR

Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9

Segawa, H; Iwata, YT; Yamamuro, T; Kuwayama, K; Tsujikawa, K; Kanamori, T; Inoue, H. Differentiation of ring-substituted regioisomers of amphetamine and methamphetamine by supercritical fluid chromatography: Differentiation of ring-substituted regioisomers by supercritical fluid chromatography. Drug Test. Analysis, 1 Mar 2017, 9 (3), 389-398. 1.3 MB. https://doi.org/10.1002/dta.2040

Anderson, GM; Castagnoli, N; Kollman, PA. Quantitative structure-activity relationships in the 2,4,5-ring-substituted phenylisopropylamines. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 199–217. 623 kB.

Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1

Glennon, RA; Young, R; Benington, F; Morin, RD. Behavioral and serotonin receptor properties of 4-substituted derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem., 1 Oct 1982, 25 (10), 1163–1168. 780 kB. https://doi.org/10.1021/jm00352a013 #12 NMR,other

Dowd, CS; Herrick-Davis, K; Egan, C; DuPre, A; Smith, C; Teitler, M; Glennon, RA. 1-[4-(3-Phenylalkyl)phenyl]-2-aminopropanes as 5-HT2A partial agonists. J. Med. Chem., 10 Aug 2000, 43 (16), 3074–3084. 271 kB. https://doi.org/10.1021/jm9906062 #22 NMR,IR

PMA
2-MA · 2-Methoxyamphetamine
Ephedrine
Pseudoephedrine
Hordenine
β-Methoxyamphetamine
4-Methylnorephedrine
β-HO-N,N-Me-PEA
N,N-Me-2-HPEA
2-HMA
N-Me-2-MPEA
β-Me-2-MPEA
N,N-Me-3-HPEA
N-Me-3-MPEA
β-Me-3-MPEA
4-HMA · Pholedrine
α-Et-4-HPEA
N-Me-4-MPEA
β-Me-4-MPEA
4-EPEA
2,3-HMeMPEA
2,3-HMeA
5-H-2C-D
β-HO-3,4-MePEA
10090
10111
Phenylpropanolmethylamine
N-MeO-A
4-Me-HOT-A
Ethyltyramine
10158
3,4-HMeA
12416
12415
4-Hydroxyphentermine
18 October 2018 · Creative Commons BY-NC-SA ·