Exploring 2C-D. To explore a different substance…

Names:
2C-D · LE-25 · 4-Methyl-2,5-dimethoxyphenethylamine · 2,5-Dimethoxy-4-methylphenethylamine
IUPAC name:
2-(2,5-Dimethoxy-4-methylphenyl)ethan-1-amine
ID: 23 · Formula: C11H17NO2 · Molecular weight: 195.258
InChI: InChI=1S/C11H17NO2/c1-8-6-11(14-3)9(4-5-12)7-10(8)13-2/h6-7H,4-5,12H2,1-3H3

Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. http://dx.doi.org/10.1016/S0968-0896(03)00437-1

Ho, B; Tansey, LW; Balster, RL; An, R; McIsaac, WM; Harris, RT. Amphetamine analogs. II. Methylated phenethylamines. J. Med. Chem., 1 Jan 1970, 13 (1), 134–135. 278 kB. http://dx.doi.org/10.1021/jm00295a034

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. http://dx.doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Lewin, AH; Navarro, HA; Mascarella, SW. Structure-activity correlations for β-phenethylamines at human trace amine receptor 1. Bioorg. Med. Chem., 1 Aug 2008, 16 (15). 366 kB. http://dx.doi.org/10.1016/j.bmc.2008.06.009

Allred, RA. Spectral characterization of 2,4-dimethoxy-3-methylphenethylamine and comparison to 2,5-dimethoxy-4-methylphenethylamine (“2C-D”). Microgram J., 1 Jan 2005, 3 (1–2), 16–26. 107 kB.

Villalobos, CA; Bull, P; Sáez, P; Cassels, BK; Huidobro-Toro, JP. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br. J. Pharmacol., 1 Apr 2004, 141 (7), 1167–1174. 271 kB. http://dx.doi.org/10.1038/sj.bjp.0705722

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. http://dx.doi.org/10.1016/j.bmc.2003.10.027

Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. http://dx.doi.org/10.1007/s11064-014-1253-y

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. BLOTTER, 1 Aug 2015, 1 (1). 2.6 MB. http://dx.doi.org/10.16889/isomerdesign-1 Open access DOI

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. Supplementary Data. BLOTTER, 1 Aug 2015, 1 (1). 11.9 MB. http://dx.doi.org/10.16889/isomerdesign-1-supp Open access DOI

Shannon, M; Battaglia, G; Glennon, RA; Titeler, M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur. J. Pharmacol., 15 Jun 1984, 102 (1), 23–29. 461 kB. http://dx.doi.org/10.1016/0014-2999(84)90333-9

Meyer, MR; Robert, A; Maurer, HH. Toxicokinetics of novel psychoactive substances: Characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs. Toxicol. Lett., 5 Jun 2014, 227 (2), 124–128. 865 kB. http://dx.doi.org/10.1016/j.toxlet.2014.03.010

Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. http://dx.doi.org/10.1038/sj.bjp.0704747

Glennon, RA; Kier, LB; Shulgin, AT. Molecular connectivity analysis of hallucinogenic mescaline analogs. J. Pharm. Sci., 1 Jan 1979, 68 (7), 906–907. 252 kB. http://dx.doi.org/10.1002/jps.2600680733

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. http://dx.doi.org/10.1111/j.2042-7158.1985.tb03072.x

Theobald, DS. The 2C-series—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 18 Dec 2006. 1.4 MB.

Glennon, RA; Young, R; Jacyno, JM. Indolealkylamine and phenalkylamine hallucinogens: Effect of α-methyl and N-methyl substituents on behavioral activity. Biochem. Pharmacol., 1 Apr 1983, 32 (7), 1267–1273. 591 kB. http://dx.doi.org/10.1016/0006-2952(83)90281-2

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. http://dx.doi.org/10.1124/jpet.106.117507

Shulgin, AT; Carter, MF. Centrally active phenethylamines. Psychopharmacol. Commun., 1 Jan 1975, 1 (1), 93–98. 6.2 MB. Rhodium.

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. http://dx.doi.org/10.1002/cmdc.200800133

Meyers-Riggs, B. The alkylated 2Cs. countyourculture, countyourculture: rational exploration of the underground, 4 Oct 2010.

White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. http://dx.doi.org/10.1016/0027-5107(77)90210-X

N-Me-2C-D
N,N-Me-2C-D
25D-NBOMe
N-HO-2C-D
25D-NBOH
25D-NBF
25D-NBMD
25D-NB3OMe
25D-NB4OMe
ARIADNE
DOM
α-Me-DOM · CHARMIAN
α-Carboxy-2C-D
α-Carboxy-DOM
BOD
BOHD
BOED
BOAD
β-Me-2C-D
β,β-Me-2C-D
2C-D-2-EtO · 2CD-2ETO
2C-2-TOM
2C-G
2C-G-21
2C-B
2C-C
2C-E
2C-F
2C-H
2C-I
2C-N
2C-O-4
2C-P
2C-SE
2C-T
2C-T-2
2C-T-4
2C-T-7
2C-T-8
2C-T-9
2C-T-13
2C-T-15
2C-T-17
2C-T-21
TMPEA
2C-CN
2C-CA · 2C-COOH
2C-TFM
2C-O-2
2C-O-7
2C-O-19
2C-SE-2
2C-SE-4
2C-SE-7
2C-SE-21
2C-TE
2C-T-10
2C-T-11
2C-T-12
2C-T-14
2C-T-5
2C-T-16
2C-T-6
2C-T-19
2C-T-21.5
2C-T-22
2C-T-18
2C-T-23
2C-YN
2C-pEtOH
2C-pKet
2C-T-3
2C-T-25
2C-T-27
2C-T-28
2C-T-30
2C-T-31
2C-T-32
2C-T-33
2C-VI
2C-BI-1
2C-BI-2
2C-BI-3
2C-BI-4
2C-BI-5
2C-BI-6
2C-BI-7
2C-BI-8
2C-BI-9
2C-BI-10
2C-BI-11
2C-BI-12
2326
2324
2327
2C-IP
2C-EF
2C-NH
2C-HM
2C-IB
2C-TFE
2C-O-22
2C-O-21.5
2C-O-21
2C-A
2C-D-5-EtO · 2CD-5ETO
2C-5-TOM
2,4-MMPEA
DMCPA
α-CP-2C-D
DOMAI · DOM-AI
DOMAT · DOM-AT
DMMCPA
HO-DOMAI
DMMCPA
DMCBA
DESOXY
2,4-DMA
2,5-DMA
3,4-DMA
MEPEA
3,5-DMA
2,3-DMA
2,6-DMA
MM-GEA
N-Me-2,5-DMPEA · 25H-NMe
2,5-MH-MMA
2-DES-Me-DOM · 2-DM-DOM
5-DES-Me-DOM · 5-DM-DOM
4-Me-2,6-DMPEA · ψ-2C-D
2407
4-Ethoxynorephedrine
BO3MM
BO3ME
BO3MA
BO3E
N-Me-DMPEA-2
2,3-EMPEA
N-Me-DMPEA-3
2,4-EMPEA
Coryneine
N,N-Me-DHA
DHEA
MHMA
MH-α-Et-PEA
HMMA
β-Me-DMPEA
N-Me-DMPEA
EMPEA
β,2-HO-5,N-DMeA
β-HO-N-Me-2-M-5-MePEA
β-HO-2-M-5-MeA
N,N-Me-2,5-HMPEA
β-Me-2,5-DMPEA
N-Me-3,5-DMPEA
N-Me-2,6-DMPEA
6-Me-2,4-DMPEA
iso-2C-D
HMP
homo-3,4-DMPEA
N-MeO-PMA
N-Me-2C-D
N,N-Me-2C-D
25D-NBOMe
N-HO-2C-D
25D-NBOH
25D-NBF
25D-NBMD
25D-NB3OMe
25D-NB4OMe
ARIADNE
DOM
α-Me-DOM · CHARMIAN
α-Carboxy-2C-D
α-Carboxy-DOM
BOD
BOHD
BOED
BOAD
β-Me-2C-D
β,β-Me-2C-D
2C-D-2-EtO · 2CD-2ETO
2C-2-TOM
2C-G
2C-G-21
2C-B
2C-C
2C-E
2C-F
2C-H
2C-I
2C-N
2C-O-4
2C-P
2C-SE
2C-T
2C-T-2
2C-T-4
2C-T-7
2C-T-8
2C-T-9
2C-T-13
2C-T-15
2C-T-17
2C-T-21
TMPEA
2C-CN
2C-CA · 2C-COOH
2C-TFM
2C-O-2
2C-O-7
2C-O-19
2C-SE-2
2C-SE-4
2C-SE-7
2C-SE-21
2C-TE
2C-T-10
2C-T-11
2C-T-12
2C-T-14
2C-T-5
2C-T-16
2C-T-6
2C-T-19
2C-T-21.5
2C-T-22
2C-T-18
2C-T-23
2C-YN
2C-pEtOH
2C-pKet
2C-T-3
2C-T-25
2C-T-27
2C-T-28
2C-T-30
2C-T-31
2C-T-32
2C-T-33
2C-VI
2C-BI-1
2C-BI-2
2C-BI-3
2C-BI-4
2C-BI-5
2C-BI-6
2C-BI-7
2C-BI-8
2C-BI-9
2C-BI-10
2C-BI-11
2C-BI-12
2326
2324
2327
2C-IP
2C-EF
2C-NH
2C-HM
2C-IB
2C-TFE
2C-O-22
2C-O-21.5
2C-O-21
2C-A
2C-D-5-EtO · 2CD-5ETO
2C-5-TOM
2,4-MMPEA
DMCPA
α-CP-2C-D
DOMAI · DOM-AI
DOMAT · DOM-AT
DMMCPA
HO-DOMAI
DMMCPA
DMCBA
DESOXY
2,4-DMA
2,5-DMA
3,4-DMA
MEPEA
3,5-DMA
2,3-DMA
2,6-DMA
MM-GEA
N-Me-2,5-DMPEA · 25H-NMe
2,5-MH-MMA
2-DES-Me-DOM · 2-DM-DOM
5-DES-Me-DOM · 5-DM-DOM
4-Me-2,6-DMPEA · ψ-2C-D
2407
4-Ethoxynorephedrine
BO3MM
BO3ME
BO3MA
BO3E
N-Me-DMPEA-2
2,3-EMPEA
N-Me-DMPEA-3
2,4-EMPEA
Coryneine
N,N-Me-DHA
DHEA
MHMA
MH-α-Et-PEA
HMMA
β-Me-DMPEA
N-Me-DMPEA
EMPEA
β,2-HO-5,N-DMeA
β-HO-N-Me-2-M-5-MePEA
β-HO-2-M-5-MeA
N,N-Me-2,5-HMPEA
β-Me-2,5-DMPEA
N-Me-3,5-DMPEA
N-Me-2,6-DMPEA
6-Me-2,4-DMPEA
iso-2C-D
HMP
homo-3,4-DMPEA
N-MeO-PMA
21 October 2017 · Creative Commons BY-NC-SA ·