- Amphetamine
- AMP
- A
Glennon, RA; Young, R; Martin, BR; Dal Cason, TA. Methcathinone (“Cat”): An enantiomeric potency comparison. Pharmacol. Biochem. Behav., 1 Jan 1995, 50 (4), 601–606. 709 kB. https://doi.org/10.1016/0091-3057(94)00348-3
Galloway, G; Shulgin, AT; Kornfeld, H; Frederick, SL. Amphetamine, not MDMA, is associated with intracranial hemorrhage. J. Accid. Emerg. Med., 1 Jan 1995, 12 (3), 231–2. 428 kB. https://doi.org/10.1136/emj.12.3.231 The target of Sasha’s critique: Intracranial haemorrhage associated with ingestion of ‘Ecstasy’.
Glennon, RA; Liebowitz, SM. Serotonin receptor affinity of cathinone and related analogues. J. Med. Chem., 1 Jan 1982, 25 (4), 393–397. 665 kB. https://doi.org/10.1021/jm00346a012 #25 MS,NMR
Scorza, MC; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #3
Vilches-Herrera, M; Miranda-Sepúlveda, J; Rebolledo-Fuentes, M; Fierro, A; Lühr, S; Iturriaga-Vasquez, P; Cassels, BK; Reyes-Parada, M. Naphthylisopropylamine and N-benzylamphetamine derivatives as monoamine oxidase inhibitors. Bioorg. Med. Chem., 15 Mar 2009, 17 (6), 2452–2460. 509 kB. https://doi.org/10.1016/j.bmc.2009.01.074
Marona-Lewicka, D; Kurrasch-Orbaugh, DM; Selken, JR; Cumbay, MG; Lisnicchia, JG; Nichols, DE. Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine 1A receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology, 1 Oct 2002, 164 (1), 93–107. 293 kB. https://doi.org/10.1007/s00213-002-1141-z
Rothman, RB; Blough, BE; Baumann, MH. Dual dopamine-5-HT releasers: potential treatment agents for cocaine addiction. Trends Pharmacol. Sci., 1 Dec 2006, 27 (12), 612–618. 515 kB. https://doi.org/10.1016/j.tips.2006.10.006 #Amphetamine
McGraw, NP; Callery, PS; Castagnoli, N. In vitro stereoselective metabolism of the psychotomimetic amine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. An apparent enantiomeric interaction. J. Med. Chem., 1 Jan 1977, 20 (2), 185–189. 661 kB. https://doi.org/10.1021/jm00212a001 #2
Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001
Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.
Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. https://doi.org/10.1021/jm00144a009 other
Nichols, DE; Barfknecht, CF; Rusterholz, DB; Benington, F; Morin, RD. Asymmetric synthesis of psychotomimetic phenylisopropylamines. J. Med. Chem., 1 May 1973, 16 (5), 480–483. 515 kB. https://doi.org/10.1021/jm00263a013 #5a
Hathaway, BA; Nichols, DE; Nichols, MB; Yim, GKW. A new, potent, conformationally-restricted analogue of amphetamine: 2-amino-1,2-dihydronaphthalene. J. Med. Chem., 1 May 1982, 25 (5), 535–538. 563 kB. https://doi.org/10.1021/jm00347a011 #1 MS,NMR,IR
Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 305–313. 10.7 MB. https://doi.org/10.1080/02791072.1986.10472362 #Amphetamine
Oberlender, R; Nichols, DE. Structural variation and (+)-amphetamine-like discriminative stimulus properties. Pharmacol. Biochem. Behav., 1 Mar 1991, 38 (3), 581–586. 586 kB. https://doi.org/10.1016/0091-3057(91)90017-V
Huang, X; Nichols, DE. 5-HT2 receptor-mediated potentiation of dopamine synthesis and central serotonergic deficits. Eur. J. Pharmacol., 20 Jul 1993, 238 (2–3), 291–296. 553 kB. https://doi.org/10.1016/0014-2999(93)90859-G
Alles, GA; Feigen, GA. Comparative physiological actions of phenyl-, thienyl- and furylisopropylamines. J. Pharmacol. Exp. Ther., 1 Jul 1941, 72 (3), 265–275. 1.5 MB. #Phenylisopropylamine
Guy, M; Freeman, S; Alder, JF; Brandt, SD. The Henry reaction: spectroscopic studies of nitrile and hydroxylamine by-products formed during synthesis of psychoactive phenylalkylamines. Cent. Eur. J. Chem., 1 Dec 2008, 6 (4), 526–534. 999 kB. https://doi.org/10.2478/s11532-008-0054-z
Rothman, RB; Blough, BE; Baumann, MH. Dual dopamine/serotonin releasers as potential medications for stimulant and alcohol addictions. AAPS J., 1 Mar 2007, 9 (1), E1–E10. 999 kB. https://doi.org/10.1208/aapsj0901001
Woolverton, WL; Shybut, G; Johanson, CE. Structure-activity relationships among some d-N-alkylated amphetamines. Pharmacol. Biochem. Behav., 1 Jan 1980, 13 (6), 869–876. 783 kB. https://doi.org/10.1016/0091-3057(80)90221-X #A
Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #4 NMR
Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017 #2-4 NMR
Ögren, S; Ross, SB. Substituted amphetamine derivatives. II. Behavioural effects in mice related to monoaminergic neurones. Acta Pharmacol. Toxicol., 1 Oct 1977, 41 (4), 353–368. 824 kB. https://doi.org/10.1111/j.1600-0773.1977.tb02674.x #Amphetamine
Thunhorst, M; Holzgrabe, U. Utilizing NMR spectroscopy for assessing drug enantiomeric composition. Magn. Reson. Chem., 1 Mar 1998, 36 (3), 211–216. 237 kB. https://doi.org/10.1002/(SICI)1097-458X(199803)36:3<211::AID-OMR246>3.0.CO;2-Y
Lewin, AH; Navarro, HA; Mascarella, SW. Structure-activity correlations for β-phenethylamines at human trace amine receptor 1. Bioorg. Med. Chem., 1 Aug 2008, 16 (15), 7415-7423. 366 kB. https://doi.org/10.1016/j.bmc.2008.06.009
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 27 Aug 2002, 9, 1634–1638. 115 kB. https://doi.org/10.1039/b200607c
Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. https://doi.org/10.1124/jpet.106.103622
Bailey, K; Legault, D. Analysis of the 13C-NMR spectra of mono- and dimethylamphetamines. Anal. Chim. Acta, 1 Jan 1981, 123, 75–82. 654 kB. https://doi.org/10.1016/S0003-2670(01)83160-3 #1 NMR
Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. https://doi.org/10.1002/omr.1270210611 #Amphetamine NMR
Bustamante, D; Diaz-Véliz, G; Paeile, C; Zapata-Torres, G; Cassels, BK. Analgesic and behavioral effects of amphetamine enantiomers, p-methoxyamphetamine and N-alkyl-p-methoxyamphetamine derivatives. Pharmacol. Biochem. Behav., 1 Oct 2004, 79 (2), 199–212. 404 kB. https://doi.org/10.1016/j.pbb.2004.06.017
Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.
Lurie, IS; Bozenko, JS; Li, L; Miller, EE; Greenfield, SJ. Chiral separation of methamphetamine and related compounds using capillary electrophoresis with dynamically coated capillaries. Microgram J., 1 Jan 2011, 8 (1), 24–28. 786 kB.
Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. https://doi.org/10.1021/jm00295a007 #1
Warren, RJ; Begosh, PP; Zarembo, JE. Identification of amphetamines and related sympathomimetic amines. J. Assoc. Off. Anal. Chem., , 54 (5), 1179–1191. 3.4 MB. #1 NMR,IR,UV
Antun, F; Smythies, JR; Benington, F; Morin, RD; Barfknecht, CF; Nichols, DE. Native fluorescence and hallucinogenic potency of some amphetamines. Experientia, 15 Jan 1971, 27 (1), 62–63. 248 kB. https://doi.org/10.1007/BF02137743 other
Horn, AS. Structure-activity relations for the inhibition of catecholamine uptake into synaptosomes from noradrenaline and dopaminergic neurones in rat brain homogenates. Br. J. Pharmacol., 1 Feb 1973, 47 (2), 332–338. 903 kB. https://doi.org/10.1111/j.1476-5381.1973.tb08331.x
Rasmussen, N. Making the first anti-depressant: Amphetamine in American medicine, 1929-1950. J. Hist. Med. Allied Sci., 1 Jul 2006, 61 (3), 288–323. 175 kB. https://doi.org/10.1093/jhmas/jrj039
Benington, F; Morin, RD; Clark, LC. Behavioral and neuropharmacological actions of N-aralkylhydroxylamines and their O-methyl ethers. J. Med. Chem., 1 Jan 1965, 8 (1), 100–104. 634 kB. https://doi.org/10.1021/jm00325a020 #13
Worsham, JN. 5-HT3 receptor ligands and their effect on psychomotor stimulants. M. Sc. Thesis, Virginia Commonwealth University, Richmond, VA, USA, 1 May 2008. 956 kB.
Oberlender, R; Nichols, DE. Drug discrimination studies with MDMA and amphetamine. Psychopharmacology, 1 May 1988, 95 (1), 71–26. 674 kB. https://doi.org/10.1007/BF00212770
Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. https://doi.org/10.1016/0014-2999(82)90454-X #1
Heal, DJ; Smith, SL; Gosden, J; Nutt, DJ. Amphetamine, past and present—a pharmacological and clinical perspective. J. Psychopharmacol., 1 Jun 2013, 27 (6), 479–496. 740 kB. https://doi.org/10.1177/0269881113482532
Clarke, EGC. The identification of amphetamine type drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 31–36. 770 kB. https://doi.org/10.1016/S0015-7368(67)70368-0 #Amphetamine TLC
Stojanovska, N; Fu, S; Tahtouh, M; Kelly, T; Beavis, A; Kirkbride, KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int., 10 Jan 2013, 224 (1–3), 8–26. 813 kB. https://doi.org/10.1016/j.forsciint.2012.10.040
De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 622 kB. https://doi.org/10.1016/j.lfs.2013.10.029
Suter, CM; Weston, AW. Some fluorinated amines of the pressor type. J. Am. Chem. Soc., 1 Feb 1941, 63 (2), 602–605. 444 kB. https://doi.org/10.1021/ja01847a069
Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0 #PIA
Aceto, MD; Rosecrans, JA; Young, R; Glennon, RA. Similarity between (+)-amphetamine and amfonelic acid. Pharmacol. Biochem. Behav., 1 Apr 1984, 20 (4), 635–637. 185 kB. https://doi.org/10.1016/0091-3057(84)90316-2
Glennon, RA; McKenney, JD; Lyon, RA; Titeler, M. 5-HT1 and 5-HT2 binding characteristics of 1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane analogs. J. Med. Chem., 1 Feb 1986, 29 (2), 194–199. 919 kB. https://doi.org/10.1021/jm00152a005 #2 NMR,IR
Baumann, MH; Partilla, JS; Lehner, KR; Thorndike, EB; Hoffman, AF; Holy, M; Rothman, RB; Goldberg, SR; Lupica, CR; Sitte, HH; Brandt, SD; Tella, SR; Cozzi, NV; Schindler, CW. Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacol., 1 Mar 2013, 38 (4), 552-562. 1.4 MB. https://doi.org/10.1038/npp.2012.204
Jackson, B; Reed, A. Another abusable amphetamine. JAMA, 2 Feb 1970, 211 (5), 830–830. 186 kB. https://doi.org/10.1001/jama.1970.03170050064024
Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., 1 Aug 1975, 47 (9), 841a–844a. 1.6 MB. https://doi.org/10.1021/ac60359a050
Nugteren-van Lonkhuyzen, JJ; van Riel, AJHP; Brunt, TM; Hondebrink, L. Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans. Drug Alcohol Depend., 1 Dec 2015, 157, 18–27. 483 kB. https://doi.org/10.1016/j.drugalcdep.2015.10.011 #Amphetamine
EMCDDA. New drugs in Europe, 2016, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2017. 489 kB.
Allen, A; Bly, R. Review: Synthetic methods for amphetamine. 1 Jan 2010. 1.6 MB.
Allen, A; Cantrell, TS. Synthetic reductions in clandestine amphetamine and methamphetamine laboratories: A review. Forensic Sci. Int., 1 Aug 1989, 42 (3), 183–199. 1.0 MB. https://doi.org/10.1016/0379-0738(89)90086-8
Hauser, FM; Rößler, T; Hulshof, JW; Weigel, D; Zimmermann, R; Pütz, M. Identification of specific markers for amphetamine synthesised from the pre-precursor APAAN following the Leuckart route and retrospective search for APAAN markers in profiling databases from Germany and the Netherlands. Drug Test. Anal., 1 Apr 2018, 10 (4), 671–680. 587 kB. https://doi.org/10.1002/dta.2296
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #3.1
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Patrick, TM; McBee, ET; Hass, HB. Synthesis of arylpropylamines. I. From allyl chloride. J. Am. Chem. Soc., 1 Jun 1946, 68 (6), 1009-1011. 376 kB. https://doi.org/10.1021/ja01210a032 #1-Phenyl-2-propylamine
Hermle, L; Kraehenmann, R. Experimental psychosis research and schizophrenia—Similarities and dissimilarities in psychopathology. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 313-332. 446 kB. https://doi.org/10.1007/7854_2016_460
Fond, G; Howes, O. Pharmacoterrorism: the potential role of psychoactive drugs in the Paris and Tunisian attacks. Psychopharmacology, 1 Mar 2016, 233 (6), 933-935. 256 kB. https://doi.org/10.1007/s00213-016-4204-2
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Power, JD; Kavanagh, P; McLaughlin, G; Barry, M; Dowling, G; Brandt, SD. “APAAN in the neck” - A reflection on some novel impurities found in seized materials containing amphetamine in Ireland during routine forensic analysis. Drug Test. Anal., 1 Jul 2017, 9 (7), 966-976. 1.3 MB. https://doi.org/10.1002/dta.2194
Brandt, SD; Kavanagh, PV. Addressing the challenges in forensic drug chemistry. Drug Test. Anal., 1 Mar 2017, 9 (3), 342-346. 120 kB. https://doi.org/10.1002/dta.2169
Rojek, S; Kłys, M; Maciów-Głąb, M; Kula, K; Strona, M. Cathinones derivatives-related deaths as exemplified by two fatal cases involving methcathinone with 4-methylmethcathinone and 4-methylethcathinone. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 770-777. 444 kB. https://doi.org/10.1002/dta.1615
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Wilkins, C; Sweetsur, P. The impact of the prohibition of benzylpiperazine (BZP) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand. Drug Alcohol Depend., 1 Jan 2013, 127 (1-3), 72-80. 521 kB. https://doi.org/10.1016/j.drugalcdep.2012.06.014
Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #30,62 LC,MS,NMR,IR
Power, JD; Barry, MG; Scott, KR; Kavanagh, PV. An unusual presentation of a customs importation seizure containing amphetamine, possibly synthesized by the APAAN–P2P–Leuckart route. Forensic Sci. Int., 1 Jan 2014, 234, e10-e13. 942 kB. https://doi.org/10.1016/j.forsciint.2013.10.003
Oh, S; Kim, KS; Chung, YS; Shong, M; Park, SB. Anti-obesity agents: A focused review on the structural classification of therapeutic entities. Curr. Top. Med. Chem., 1 Apr 2009, 9 (6), 466–481. 438 kB. https://doi.org/10.2174/156802609788897862
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB.
Anderson, GM; Castagnoli, N; Kollman, PA. Quantitative structure-activity relationships in the 2,4,5-ring-substituted phenylisopropylamines. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 199–217. 623 kB. #14
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #28
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #1
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #LX
Simmler, LD; Liechti, ME. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 143-164. 298 kB. https://doi.org/10.1007/164_2018_113
Vajs, V; Djordjević, I; Vujisić, L; Milosavljević, SM. NMR spectroscopy in the analysis of illegal drugs. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 177–197. 5.4 MB.
Broadley, KJ. The vascular effects of trace amines and amphetamines. Pharmacol. Ther., 1 Mar 2010, 125 (3), 363–375. 1.1 MB. https://doi.org/10.1016/j.pharmthera.2009.11.005 #amphetamine
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #AM
Wee, S; Anderson, KG; Rothman, RB; Bough, BE; Woolverton, WL. Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J. Pharmacol. Exp. Ther., 1 May 2005, 313 (2), 848–254. 171 kB. https://doi.org/10.1124/jpet.104.080101 #amphetamine
Nichols, DF; Oberlender, R. Structure-activity relationships of MDMA and related compounds: A new class of psychoactive agents? In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 105–131. 733 kB. https://doi.org/10.1007/978-1-4613-1485-1_7 #1
Glennon, RA; Young, R; Benington, F; Morin, RD. Behavioral and serotonin receptor properties of 4-substituted derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem., 1 Oct 1982, 25 (10), 1163–1168. 780 kB. https://doi.org/10.1021/jm00352a013 #10 NMR,other
Bishop, SC; McCord, BR; Gratz, SR; Loeliger, JR; Witkowski, MR. Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector. J. Forensic Sci., 1 Mar 2005, 50 (2), 1–10. 597 kB. https://doi.org/10.1520/JFS2004239 #Amphetamine LC,MS,UV,other
Lurie, IS; Bethea, MJ; McKibben, TD; Hays, PA; Pellegrini, P; Sahai, R; Garcia, AD; Weinberger, R. Use of dynamically coated capillaries for the routine analysis of methamphetamine, amphetamine, MDA, MDMA, MDEA, and cocaine using capillary electrophoresis. J. Forensic Sci., 1 Sep 2001, 46 (5), 1025–1032. 346 kB. https://doi.org/10.1520/JFS15096J #Amphetamine other
Rothman, RB; Partilla, JS; Baumann, MH; Lightfoot-Siordia, C; Blough, BE. Studies of the biogenic amine transporters. 14. Identification of low-efficacy “partial” substrates for the biogenic amine transporters. J. Pharmacol. Exp. Ther., 1 Apr 2012, 341 (1), 251–262. 2.2 MB. https://doi.org/10.1124/jpet.111.188946 #Amphetamine
Holland, GF; Buck, CJ; Weissman, A. Anorexigenic agents: Aromatic substituted 1-phenyl-2-propylamines. J. Med. Chem., 1 Sep 1963, 6 (5), 519–524. 808 kB. https://doi.org/10.1021/jm00341a011 #Amphetamine
Rothman, RB; Vu, N; Partilla, JS; Roth, BL; Hufeisen, SJ; Compton-Toth, BA; Birkes, J; Young, R; Glennon, RA. In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates. J. Pharmacol. Exp. Ther., 1 Oct 2003, 307 (1), 138–145. 516 kB. https://doi.org/10.1124/jpet.103.053975 #Amphetamine
Glennon, RA; Young, R. MDA: A psychoactive agent with dual stimulus effects. Life Sci., 23 Jan 1984, 34 (4), 379–383. 283 kB. https://doi.org/10.1016/0024-3205(84)90627-1 #Amphetamine
Johnson, MW; Griffiths, RR; Hendricks, PS; Henningfield, JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 1 Nov 2018, 142, 143-166. 2.5 MB. https://doi.org/10.1016/j.neuropharm.2018.05.012 #Amfetamine
Maier, J; Mayer, FP; Brandt, SD; Sitte, HH. DARK classics in chemical neuroscience: Aminorex analogues. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2484–2502. 1.8 MB. https://doi.org/10.1021/acschemneuro.8b00415 #Amphetamine
EMCDDA. Report on the risk assessment of 4,4′-DMAR, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Oct 2015. 1.1 MB. #d-Amphetamine MS,NMR
Nichols, DE. CNS Stimulants. In Burger's Medicinal Chemistry and Drug Discovery; Abraham, DJ, Ed., John Wiley & Sons, Inc., 29 Jan 2010; pp 89–120. 1.8 MB. https://doi.org/10.1002/0471266949.bmc243 #7,10
Hudkins, RL; Marino, MJ; Williams, M. Cognition. In Burger's Medicinal Chemistry and Drug Discovery; Abraham, DJ, Ed., John Wiley & Sons, Inc., 29 Jan 2010; pp 15–60. 784 kB. https://doi.org/10.1002/0471266949.bmc242 #121
Simmons, SJ; Leyrer-Jackson, JM; Oliver, CF; Hicks, C; Muschamp, JW; Rawls, SM; Olive, MF. DARK classics in chemical neuroscience: Cathinone-derived psychostimulants. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2379–2394. 1.6 MB. https://doi.org/10.1021/acschemneuro.8b00147 #Amphetamine
Chambers, SA; DeSousa, JM; Huseman, ED; Townsend, SD. The DARK side of total synthesis: Strategies and tactics in psychoactive drug production. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2307–2330. 8.1 MB. https://doi.org/10.1021/acschemneuro.7b00528 #123
Rickli, A; Hoener, MC; Liechti, ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: Para-halogenated amphetamines and pyrovalerone cathinones. Eur. Neuropsychopharmacol., 1 Mar 2015, 25 (3), 365–376. 1.6 MB. https://doi.org/10.1016/j.euroneuro.2014.12.012 #Amphetamine
Wenthur, CJ. Classics in Chemical Neuroscience: Methylphenidate. ACS Chem. Neurosci., 17 Aug 2016, 7 (8), 1030–1040. 531 kB. https://doi.org/10.1021/acschemneuro.6b00199 #13
Baumann, MH; Walters, HM; Niello, M; Sitte, HH. Neuropharmacology of synthetic cathinones. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 113–142. 409 kB. https://doi.org/10.1007/164_2018_178 #Amphetamine
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S1 Phenethylamines d-Amphetamine
Glennon, R; Bondareva, T; Young, R. α-Ethyltryptamine (α-ET) as a discriminative stimulus in rats. Pharmacol. Biochem. Behav., 1 Oct 2006, 85 (2), 448–453. 245 kB. https://doi.org/10.1016/j.pbb.2006.09.014 #Amphetamine
Tilson, HA; Chamberlain, JH; Gylys, JA. Behavioral comparisons of R-2-amino-1-(2,5-dimethoxy-4-methylphenyl) butane (BL-3912A) with R-DOM and S-amphetamine. Psychopharmacology, 1 Jan 1977, 51 (2), 169–173. 507 kB. https://doi.org/10.1007/BF00431735 #Amphetamine
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #PP-001, PP-002, PP-003
Abbruscato, TJ; Trippier, PC. DARK classics in chemical neuroscience: Methamphetamine. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2373-2378. 393 kB. https://doi.org/10.1021/acschemneuro.8b00123 #AMP
Decker, AM; Partilla, JS; Baumann, MH; Rothman, RB; Blough, BE. The biogenic amine transporter activity of vinylogous amphetamine analogs. Med. Chem. Commun., 11 Aug 2016, 7 (8), 1657–1663. 605 kB. https://doi.org/10.1039/C6MD00245E #1 MS,NMR,other
Matsushita, T; Ishibashi, H; Morio, H. Study on methods to discriminate the stimulant analogues fluoroamphetamines and fluoromethamphetamines. JCCL, 1 Sep 2014, (54), 91–103. 582 kB. #Amph Japanese, English abstract GC,MS,IR,TLC
Berger, ML; Schweifer, A; Rebernik, P; Hammerschmidt, F. NMDA receptor affinities of 1,2-diphenylethylamine and 1-(1,2-diphenylethyl)piperidine enantiomers and of related compounds. Bioorg. Med. Chem., 1 May 2009, 17 (9), 3456–3462. 340 kB. https://doi.org/10.1016/j.bmc.2009.03.025 #17 NMR,IR,other
Elliott, SP; Holdbrook, T; Brandt, SD. Prodrugs of new psychoactive substances (NPS): A new challenge. J. Forensic Sci., 13 Jan 2020, 65 (3), 913-920. 815 kB. https://doi.org/10.1111/1556-4029.14268 #Amphetamine MS,UV
Sáez-Briones, P; Hernández, A. MDMA (3,4-Methylenedioxymethamphetamine) Analogues as Tools to Characterize MDMA-Like Effects: An Approach to Understand Entactogen Pharmacology. Curr. Neuropharmacol., 1 Sep 2013, 11 (5), 521–534. 1.4 MB. https://doi.org/10.2174/1570159X11311050007 #amphetamine
Meyers-Riggs, B. Phenethylamine and amphetamine. countyourculture, countyourculture: rational exploration of the underground, 2 Nov 2010.
Hägele, JS; Basrak, M; Schmid, MG. Enantioselective separation of novel psychoactive substances using a Lux® AMP 3 μm column and HPLC-UV. J. Pharm. Biomed. Anal., 5 Feb 2020, 179, 112967. 3.6 MB. https://doi.org/10.1016/j.jpba.2019.112967 #A0 LC
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #d-amphetamine
Folen, VA. X-Ray powder diffraction data for some drugs, excipients, and adulterants in illicit samples. J. Forensic Sci., 1 Apr 1975, 20 (2), 348–372. 502 kB. https://doi.org/10.1520/JFS10282J #8-13 other
Åstrand, A; Guerrieri, D; Vikingsson, S; Kronstrand, R; Green, H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci. Int., 1 Dec 2020, 317, 110553. 1.7 MB. https://doi.org/10.1016/j.forsciint.2020.110553 #Amphetamine
Tsumura, Y; Kiguchi, A; Komatsuzaki, S; Ieuji, K. A novel method to distinguish β-methylphenylethylamines from isomeric α-methylphenylethylamines by liquid chromatography coupled to electrospray ionization mass spectrometry. Forensic Toxicol., 1 Jul 2020, 38 (2), 465–474. 823 kB. https://doi.org/10.1007/s11419-019-00511-z #15 LC,MS,other
McKibben, T. Protecting group chemistry. JCLIC, 1 Oct 1997, 7 (4), 30-42. 1.1 MB.
Hugel, J. The clay pot method of making amphetamine. JCLIC, 1 Mar 1994, 4 (2), 26-27. 552 kB.
Phillips, J; Pigou, P; Norman, K; Kirkbride, P. An evaluation of the production of amphetamine from phenylalanine. JCLIC, 1 Jul 2017, 27 (3), 24-36. 783 kB. #2 GC,MS,NMR,IR
Nash, C; Muldoon, B; Camilleri, A. Essential oils to synthetic illicit drugs using the Ritter reaction. JCLIC, 1 Jan 2017, 27 (1), 19-32. 1.2 MB. #1 GC,MS
Balatoni, I; Nagy, TZ. The “HEDGEHOG” technology. JCLIC, 1 Mar 2015, 25 (2), 14-17. 1.1 MB. GC,LC
Chappell, JS. Infrared absorption properties of solid-dosage drug substances. Part II. Infrared absorption by hydrogen bonds. JCLIC, 1 Mar 2014, 24 (2-3), 9-27. 1.6 MB. IR
Norman, K. The synthesis of amphetamine and methamphetamine: A “big” picture. JCLIC, 1 Jul 2009, 19 (3), 10-29. 896 kB.
Kamb, V. Analytical profile of lisdexamfetamine dimesylate (Vyvanse™). JCLIC, 1 Mar 2008, 18 (2), 3-6. 365 kB. MS,IR
Cohen, WS. Ephedra used as a precursor in methamphetamine manufacturing. JCLIC, 1 Apr 2006, 16 (2), 21–22. 81 kB. MS
Malone, JV. HPLC quantitation of clandestinely manufactured mixtures of amphetamine and methamphetamine. JCLIC, 1 Oct 1998, 8 (4), 26-27. 552 kB. LC
Antonides, LH; Brignall, RM; Costello, A; Ellison, J; Firth, SE; Gilbert, N; Groom, BJ; Hudson, SJ; Hulme, MC; Marron, J; Pullen, ZA; Robertson, TBR; Schofield, CJ; Williamson, DC; Kemsley, EK; Sutcliffe, OB; Mewis, RE. Rapid identification of novel psychoactive and other controlled substances using low-field 1H NMR spectroscopy. ACS Omega, 30 Apr 2019, 4 (4), 7103–7112. 1.3 MB. https://doi.org/10.1021/acsomega.9b00302 #Amphetamine NMR
Mesley, RJ; Evans, WH. Infrared identification of some hallucinogenic derivatives of tryptamine and amphetamine. J. Pharm. Pharmacol., 1 May 1970, 22 (5), 321–332. 775 kB. https://doi.org/10.1111/j.2042-7158.1970.tb08533.x #Amphetamine IR
Huizer, H; Brussee, H; Poortman-van der Meer, A. Di-(β-Phenylisopropyl)amine in Illicit Amphetamine. J. Forensic Sci., 1 Apr 1985, 30 (2), 427–438. 419 kB. https://doi.org/10.1520/JFS11822J #Amphetamine GC,MS,NMR,IR,TLC
van der Ark, A; Verweij, AMA; Sinnema, A. Weakly basic impurities in illicit amphetamine. J. Forensic Sci., 1 Oct 1978, 23 (4), 693–700. 365 kB. https://doi.org/10.1520/JFS10725J #Amphetamine GC,MS,NMR,TLC
Kram, TC. Reidentification of a major impurity in illicit amphetamine. J. Forensic Sci., 1 Jul 1979, 24 (3), 596–599. 282 kB. https://doi.org/10.1520/JFS10875J #Amphetamine MS,NMR,IR
Angenoorth, TJF; Stankovic, S; Niello, M; Holy, M; Brandt, SD; Sitte, HH; Maier, J. Interaction profiles of central nervous system active drugs at human organic cation transporters 1–3 and human plasma membrane monoamine transporter. Int. J. Mol. Sci., 30 Nov 2021, 22 (23), 12995. 5.1 MB. https://doi.org/10.3390/ijms222312995 #Amphetamine
Forbes, IJ; Kirkbride, KP. The origin of alkenes in illicit amphetamine: An examination of the illicit synthesis of phenyl-2-propanone. J. Forensic Sci., 1 Sep 1992, 37 (5), 1311–1318. 353 kB. https://doi.org/10.1520/JFS13318J #2 GC,MS
Angelos, SA; Janovsky, TJ; Raney, JK. The identification and quantitation of pharmaceutical preparations by nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Mar 1991, 36 (2), 358–365. 383 kB. https://doi.org/10.1520/JFS13038J #Amphetamine NMR
Soine, WH; Thomas, MN; Shark, RE; Scott, J; Agee, DT. Differentiation of side chain positional isomers of amphetamine. J. Forensic Sci., 1 Jan 1984, 29 (1), 177–184. 353 kB. https://doi.org/10.1520/JFS11649J #I GC,MS,TLC,spot
Liu, JH; Ramesh, S; Tsay, JT; Ku, WW; Fitzgerald, MP; Angelos, SA; Lins, CLK. Approaches to drug sample differentiation. II: Nuclear magnetic resonance spectrometric determination of methamphetamine enantiomers. J. Forensic Sci., 1 Oct 1981, 26 (4), 656–663. 358 kB. https://doi.org/10.1520/JFS11419J #Amphetamine NMR
Bailey, K; Legault, D. The use of carbon-13 nuclear magnetic resonance spectra in the identification and authentication of monomethoxyamphetamines and dimethoxyamphetamines. J. Forensic Sci., 1 Jan 1981, 26 (1), 27–34. 366 kB. https://doi.org/10.1520/JFS11326J #Amphetamine NMR
Kram, TC. Analysis of illicit drug exhibits by hydrogen-1 nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Jul 1978, 23 (3), 456–469. 497 kB. https://doi.org/10.1520/JFS10692J #Amphetamine NMR
Kram, TC; Kruegel, AV. The identification of impurities in illicit methamphetamine exhibits by gas chromatography/mass spectrometry and nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Jan 1977, 22 (1), 40–52. 444 kB. https://doi.org/10.1520/JFS10366J #V GC,MS,NMR
Philp, M; Shimmon, R; Stojanovska, N; Tahtouh, M; Fu, S. Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials. Anal. Methods, 1 Jan 2013, 5 (20), 5402. 783 kB. https://doi.org/10.1039/c3ay40511g #Amphetamine MS,NMR,IR,spot
Benington, F; Morin, RD. The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. Med. Chem., 1 Jul 1968, 11 (4), 896–897. 244 kB. https://doi.org/10.1021/jm00310a048 #2.8
Kolaczynska, KE; Ducret, P; Trachsel, D; Hoener, MC; Liechti, ME; Luethi, D. Pharmacological characterization of 3,4-methylenedioxyamphetamine (MDA) analogs and two amphetamine-based compounds: N,α-DEPEA and DPIA. Eur. Neuropsychopharmacol., 1 Jun 2022, 59, 9–22. 1.5 MB. https://doi.org/10.1016/j.euroneuro.2022.03.006 #d-Amphetamine
Shulgin, AT. Mescaline: the chemistry and pharmacology of its analogs. Lloydia, 1 Jan 1973, 36 (1), 46–58. 5.6 MB. #12
Vogel, WH; Evans, BD. Structure-activity-relationships of certain hallucinogenic substances based on brain levels. Life Sci., 15 May 1977, 20 (10), 1629–1635. 419 kB. https://doi.org/10.1016/0024-3205(77)90335-6 #Phenylisopropylamine (PIA)
Glennon, RA; Rosecrans, JA. Indolealkylamine and phenalkylamine hallucinogens: A brief overview. Neurosci. Biobehav. Rev., 1 Jan 1982, 6 (4), 489–497. 895 kB. https://doi.org/10.1016/0149-7634(82)90030-6 #8a
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #57