Exploring Methcathinone. To explore a different substance…

Names:
METHCATH
Methcathinone
α-Methylaminopropiophenone
Ephedrone
IUPAC name:
2-(Methylamino)-1-phenylpropan-1-one
2003 · C10H13NO · 163.216
InChI=1S/C10H13NO/c1-8(11-2)10(12)9-6-4-3-5-7-9/h3-8,11H,1-2H3
LPLLVINFLBSFRP-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Dal Cason, TA; Young, R; Glennon, RA. Cathinone: An investigation of several N-alkyl and methylenedioxy-substituted analogs. Pharmacol. Biochem. Behav., 1 Jan 1997, 58 (4), 1109–1116. 97 kB. https://doi.org/10.1016/S0091-3057(97)00323-7

Foley, KF. Aminopropiophenones at the norepinephrine transporter: Structure-activity relationships and behavioral effects of methcathinone analogs. Ph. D. Thesis, Brody School of Medicine, Greenville, NC, USA, 1 May 2002. 8.6 MB.

Archer, R. Fluoromethcathinone, a new substance of abuse. Forensic Sci. Int., 1 Jan 2009, 185 (1–3), 10–20. 1.4 MB. https://doi.org/10.1016/j.forsciint.2008.11.013

Iversen, LL. Consideration of the cathinones, Advisory Council on the Misuse of Drugs, 31 Mar 2010. 286 kB.

Glennon, RA; Young, R; Martin, BR; Dal Cason, TA. Methcathinone (“Cat”): An enantiomeric potency comparison. Pharmacol. Biochem. Behav., 1 Jan 1995, 50 (4), 601–606. 709 kB. https://doi.org/10.1016/0091-3057(94)00348-3

Cozzi, NV; Shulgin, AT; Ruoho, AE. Methcathinone (MCAT) and 2-methylamino-1-(3,4-methylenedioxyphenyl)propan-1-one (MDMCAT) inhibit [3H]serotonin uptake into human platelets. Amer. Chem. Soc. Div. Med. Chem. Abs., 1 Jan 1998, 215, 152. 11 kB.

Baumann, MH; Ayestas, MA; Partilla, JS; Sink, JR; Shulgin, AT; Daley, PF; Brandt, SD; Rothman, RB; Ruoho, AE; Cozzi, NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology, 1 Apr 2012, 37, 1192–1203. 763 kB. https://doi.org/10.1038/npp.2011.304

Cozzi, NV; Sievert, MK; Shulgin, AT; Jacob, P; Ruoho, AE. Inhibition of plasma membrane monoamine transporters by β-ketoamphetamines. Eur. J. Pharmacol., 1 Jan 1999, 381 (1), 63–69. 111 kB. https://doi.org/10.1016/S0014-2999(99)00538-5

Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 2012, 9 (1), 27–32. 496 kB.

Cozzi, NV; Brandt, SD; Daley, PF; Partilla, JS; Rothman, RB; Tulzer, A; Sitte, HH; Baumann, MH. Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs. Eur. J. Pharmacol., 15 Jan 2013, 699 (1–3), 180–187. 590 kB. https://doi.org/10.1016/j.ejphar.2012.11.008

Zuba, D. Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. Trends Anal. Chem., 1 Feb 2012, 32, 15–30. 576 kB. https://doi.org/10.1016/j.trac.2011.09.009

Rothman, RB; Vu, N; Partilla, JS; Roth, BL; Hufeisen, SJ; Compton-Toth, BA; Birkes, J; Young, R; Glennon, RA. In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates. J. Pharmacol. Exp. Ther., 1 Oct 2003, 307 (1), 138–145. 516 kB. https://doi.org/10.1124/jpet.103.053975

LeBelle, MJ; Savard, C; Dawson, BA; Black, DB; Katyal, LK; Zrcek, F; By, AW. Chiral identification and determination of ephedrine, pseudoephedrine, methamphetamine and metecathinone by gas chromatography and nuclear magnetic resonance. Forensic Sci. Int., 28 Feb 1995, 71 (3), 215–223. 405 kB. https://doi.org/10.1016/0379-0738(94)01669-0

Foley, KF; Cozzi, NV. Novel aminopropiophenones as potential antidepressants. Drug Dev. Res., 1 Dec 2003, 60 (4), 252–260. 1.6 MB. https://doi.org/10.1002/ddr.10297

Young, R; Glennon, RA. Cocaine-stimulus generalization to two new designer drugs: Methcathinone and 4-methylaminorex. Pharmacol. Biochem. Behav., 1 May 1993, 45 (1), 209–214. 224 kB. https://doi.org/10.1016/0091-3057(93)90110-F

Cameron, K; Kolanos, R; Vekariya, R; De Felice, L; Glennon, RA. Mephedrone and methylenedioxypyrovalerone (MDPV), major constituents of “bath salts,” produce opposite effects at the human dopamine transporter. Psychopharmacology, 1 Jun 2013, 227 (3), 493–499. 190 kB. https://doi.org/10.1007/s00213-013-2967-2

Eshleman, AJ; Wolfrum, KM; Hatfield, MG; Johnson, RA; Murphy, KV; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol., 15 Jun 2013, 85 (12), 1803–1815. 2.2 MB. https://doi.org/10.1016/j.bcp.2013.04.004

Dybdal-Hargreaves, NF; Holder, ND; Ottoson, PE; Sweeney, MD; Williams, T. Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur. J. Pharmacol., 15 Aug 2013, 714 (1–3), 32–40. 837 kB. https://doi.org/10.1016/j.ejphar.2013.05.024

De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 697 kB. https://doi.org/10.1016/j.lfs.2013.10.029

Bonano, JS; Glennon, RA; Felice, LJ; Banks, ML; Negus, SS. Abuse-related and abuse-limiting effects of methcathinone and the synthetic “bath salts” cathinone analogs methylenedioxypyrovalerone (MDPV), methylone and mephedrone on intracranial self-stimulation in rats. Psychopharmacology, 1 Jan 2014, 231 (1), 199-207. 285 kB. https://doi.org/10.1007/s00213-013-3223-5

Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9

Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, 11 Feb 2011, 50, 63-82. 627 kB. Retrieved from http://www.customs.go.jp/ccl_search/e_info_search/drugs/r_50_08_e.pdf

Bonano, JS; Banks, ML; Kolanos, R; Sakloth, F; Barnier, ML; Glennon, RA; Cozzi, NV; Partilla, JS; Baumann, MH; Negus, SS. Quantitative structure-activity relationship analysis of the pharmacology of para-substituted methcathinone analogues: QSAR of para-substituted methcathinone analogues. Br. J. Pharmacol., 2015, 172 (10), 2433-2444. 985 kB. https://doi.org/10.1111/bph.13030

Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Analysis, 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315

Zhingel, KY; Dovensky, W; Crossman, A; Allen, A. Ephedrone: 2-methylamino-1-phenylpropan-1-one (Jeff). J. Forensic Sci., 1 May 1991, 36 (3), 13103J. 309 kB. https://doi.org/10.1520/JFS13103J

Calderon, SN; Klein, M. A regulatory perspective on the abuse potential evaluation of novel stimulant drugs in the United States. Neuropharmacology, 1 Dec 2014, 87, 97-103. 266 kB. https://doi.org/10.1016/j.neuropharm.2014.04.001

Kavanagh, PV; Power, JD. New psychoactive substances legislation in Ireland – Perspectives from academia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 884-891. 1.2 MB. https://doi.org/10.1002/dta.1598

Rojek, S; Kłys, M; Maciów-Głąb, M; Kula, K; Strona, M. Cathinones derivatives-related deaths as exemplified by two fatal cases involving methcathinone with 4-methylmethcathinone and 4-methylethcathinone. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 770-777. 444 kB. https://doi.org/10.1002/dta.1615

Mas-Morey, P; Visser, MHM; Winkelmolen, L; Touw, DJ. Clinical Toxicology and Management of Intoxications With Synthetic Cathinones ("Bath Salts"). J. Pharm. Pract., 25 Nov 2012, 26 (4), 353-357. 312 kB. https://doi.org/10.1177/0897190012465949

Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1

Majchrzak, M; Celiński, R. Cathinone derivatives and their analysis. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 251–276. 1.1 MB. #Methcathinone

Adamowicz, P; Zuba, D. Discrimination among designer drug isomers by chromatographic and spectrometric methods. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 211–232. 1.1 MB.

Broadley, KJ. The vascular effects of trace amines and amphetamines. Pharmacol. Ther., 1 Mar 2010, 125 (3), 363–375. 1.1 MB. https://doi.org/10.1016/j.pharmthera.2009.11.005 #methcathinone

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #Methcathinone

Gaspar, H; Bronze, S; Oliveira, C; Victor, BL; Machuqueiro, M; Pacheco, R; Caldeira, MJ; Santos, S. Proactive response to tackle the threat of emerging drugs: Synthesis and toxicity evaluation of new cathinones. Forensic Sci. Int., 1 Sep 2018, 290 146–156. 1.6 MB. https://doi.org/10.1016/j.forsciint.2018.07.001 #Methcathinone MS,NMR

7-HAT
MeO-AI
4-MC · 4-Methylcathinone
DMAA
HHAT
Longimammosine
Longimammatine
Longimammidine
2283
1481
HOT-2-AT
10845
10832
10746
10734
10531
10524
5-AEDB
Isomethcathinone
4-Methyl-5-phenyloxazolidine
24 September 2018 · Creative Commons BY-NC-SA ·