- 2C-B
- 4-Bromo-2,5-dimethoxyphenethylamine
Shulgin, AT; Carter, MF. Centrally active phenethylamines. Psychopharmacol. Commun., 1 Jan 1975, 1 (1), 93–98. 6.2 MB. #III Rhodium.
Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133 #11
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. https://doi.org/10.1124/jpet.106.117507
Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. https://doi.org/10.1038/sj.bjp.0704747
McLean, TH; Parrish, JC; Braden, MR; Marona-Lewicka, D; Gallardo-Godoy, A; Nichols, DE. 1-Aminomethylbenzocycloalkanes: Conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J. Med. Chem., 1 Jan 2006, 49 (19), 5794–5803. 522 kB. https://doi.org/10.1021/jm060656o #1 MS,NMR
White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. https://doi.org/10.1016/0027-5107(77)90210-X #10
Glennon, RA; Kier, LB; Shulgin, AT. Molecular connectivity analysis of hallucinogenic mescaline analogs. J. Pharm. Sci., 1 Jan 1979, 68 (7), 906–907. 252 kB. https://doi.org/10.1002/jps.2600680733 #VIII
Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. https://doi.org/10.1111/j.2042-7158.1985.tb03072.x #1d
Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. https://doi.org/10.1007/s10822-010-9400-2
Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.
Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB. #2C-B LC,MS,NMR
Theobald, DS. The 2C-series—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 18 Dec 2006. 1.4 MB.
Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB. #41
Caudevilla-Gálligo, F; Riba, J; Ventura, M; González, D; Farré, M; Barbanoj, MJ; Carlos Bouso, J. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): presence in the recreational drug market in Spain, pattern of use and subjective effects. J. Psychopharmacol., 1 Jul 2012, 26 (7), 1026–1035. 586 kB. https://doi.org/10.1177/0269881111431752
Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.
de Boer, D; Bosman, I. A new trend in drugs-of-abuse; the 2C-series of phenethylamine designer drugs. Pharm. World Sci., 1 Apr 2004, 26 (2), 110–113. 61 kB. https://doi.org/10.1023/B:PHAR.0000018600.03664.36
Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #29 NMR
Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B #S6
Parrish, JC; Braden, MR; Gundy, E; Nichols, DE. Differential phospholipase C activation by phenylalkylamine serotonin 5-HT2A receptor agonists. J. Neurochem., 1 Dec 2005, 95 (6), 1575–1584. 301 kB. https://doi.org/10.1111/j.1471-4159.2005.03477.x
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci., 1 Jan 2008, 54 (1), 89–96. 1.9 MB. https://doi.org/10.1248/jhs.54.89
Lewin, AH; Navarro, HA; Mascarella, SW. Structure-activity correlations for β-phenethylamines at human trace amine receptor 1. Bioorg. Med. Chem., 1 Aug 2008, 16 (15), 7415-7423. 366 kB. https://doi.org/10.1016/j.bmc.2008.06.009
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
McGrane, O; Simmons, J; Jacobsen, E; Skinner, C. Alarming trends in a novel class of designer drugs. J. Clinic. Toxicol., 1 Nov 2011, 1 (2), 1000108. 775 kB. https://doi.org/10.4172/2161-0495.1000108
Villalobos, CA; Bull, P; Sáez, P; Cassels, BK; Huidobro-Toro, JP. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br. J. Pharmacol., 1 Apr 2004, 141 (7), 1167–1174. 271 kB. https://doi.org/10.1038/sj.bjp.0705722
Kanai, K; Takekawa, K; Kumamoto, T; Ishikawa, T; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol., 1 Nov 2008, 26 (2), 6–12. 406 kB. https://doi.org/10.1007/s11419-008-0041-2
Páleníček, T; Fujáková, M; Brunovský, M; Horáček, J; Gorman, I; Balíková, M; Rambousek, L; Syslová, K; Kačer, P; Zach, P; Bubeníková-Valešová, V; Tylš, F; Kubešová, A; Puskarčíková, J; Hõschl, C. Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology, 1 Jan 2013, 225 (1), 75–93. 1.1 MB. https://doi.org/10.1007/s00213-012-2797-7
de Boer, D; Gijzels, MJ; Bosman, IJ; Maes, RAA. More data about the new psychoactive drug 2C-B. J. Anal. Toxicol., 1 Jul 1999, 23 (3), 227–228. 218 kB. https://doi.org/10.1093/jat/23.3.227
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #21 Rhodium.
Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. https://doi.org/10.1016/0014-2999(82)90454-X #11
Katagi, M; Tsuchihashi, H. Update on clandestine amphetamines and their analogues recently seen in Japan. J. Health Sci., 1 Jan 2002, 48 (1), 14–21. 181 kB. https://doi.org/10.1248/jhs.48.14 MS
Carmo, H; Hengstler, JG; de Boer, D; Ringel, M; Remião, F; Carvalho, F; Fernandes, E; dos Reys, LA; Oesch, F; de Lourdes Bastos, M. Metabolic pathways of 4-bromo-2,5-dimethoxyphenethylamine (2C-B): analysis of phase I metabolism with hepatocytes of six species including human. Toxicology, 5 Jan 2005, 206 (1), 75–89. 273 kB. https://doi.org/10.1016/j.tox.2004.07.004
Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027 #9
Meyer, MR; Robert, A; Maurer, HH. Toxicokinetics of novel psychoactive substances: Characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs. Toxicol. Lett., 5 Jun 2014, 227 (2), 124–128. 865 kB. https://doi.org/10.1016/j.toxlet.2014.03.010
Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. https://doi.org/10.1007/s11064-014-1253-y
Power, JD; Kavanagh, P; O’Brien, J; Barry, M; Twamley, B; Talbot, B; Dowling, G; Brandt, SD. Test purchase, identification and synthesis of 2-amino-1-(4-bromo-2, 5-dimethoxyphenyl)ethan-1-one (bk-2C-B). Drug Test. Anal., 1 Jun 2015, 7 (6), 512-518. 860 kB. https://doi.org/10.1002/dta.1699 GC,LC,MS,NMR
Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Neuropharmacology of New Psychoactive Substances (NPS): The Science Behind the Headlines; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 18 Jan 2017; pp 283-311. 826 kB. https://doi.org/10.1007/7854_2016_64
Texter, KB; Waymach, R; Kavanagh, PV; O’Brien, JE; Talbot, B; Brandt, SD; Gardner, EA. Identification of pyrolysis products of the new psychoactive substance 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) and its iodo analogue bk-2C-I. Drug Test. Anal., 1 Jan 2018, 10 (1), 229-236. 998 kB. https://doi.org/10.1002/dta.2200
Isberg, V; Paine, J; Leth-Petersen, S; Kristensen, JL; Gloriam, DE. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors. PLoS ONE, 7 Nov 2013, 8 (11), e78515. 2.3 MB. https://doi.org/10.1371/journal.pone.0078515
Maruyama, Y; Matsumoto, Y; Noguchi, H; Yamazaki, M; Inde, S. Analysis of 2C-B and related compounds of 2C-B. JCCL, 1 Jan 2000, (39), 41–57. 476 kB. #2C-B Japanese, English abstract GC,LC,MS,NMR,IR,UV
Matsumoto, Y; Sugiyama, M; Yasuoka, T; Muroi, H; Okazaki, R; Terauchi, Y; Sasatani, T. Qualitative analysis of 2C-B designer drugs. JCCL, 1 Jan 2004, (44), 75–85. 648 kB. #2C-B Japanese, English abstract GC,LC,MS,NMR,IR,UV
DeRuiter, J; Clark, R; Noggle, FT. LC and GC—MS analysis of 4-bromo-2,5-dimethoxyphenethylamine (Nexus) and 2-propanamine and 2-butanamine analogues. J. Chromatogr. Sci., 1 Oct 1995, 33 (10), 583–590. 1.2 MB. https://doi.org/10.1093/chromsci/33.10.583 #Nexus GC,LC,MS
Papaseit, E; Farré, M; Pérez-Mañá, C; Torrens, M; Ventura, M; Pujadas, M; de la Torre, R; González, D. Acute pharmacological effects of 2C-B in humans: An observational study. Front. Pharmacol., 13 Mar 2018, 9 (206). 500 kB. https://doi.org/10.3389/fphar.2018.00206
Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs). Neuropharmacology, 15 May 2018, 134 (A), 141-148. 478 kB. https://doi.org/10.1016/j.neuropharm.2017.07.012 #2C-B
Nugteren-van Lonkhuyzen, JJ; van Riel, AJHP; Brunt, TM; Hondebrink, L. Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans. Drug Alcohol Depend., 1 Dec 2015, 157, 18–27. 483 kB. https://doi.org/10.1016/j.drugalcdep.2015.10.011 #2C-B
Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99, 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #2C-B
McGonigal, MK; Wilhide, JA; Smith, PB; Elliott, NM; Dorman, FL. Analysis of synthetic phenethylamine street drugs using direct sample analysis coupled to accurate mass time of flight mass spectrometry. Forensic Sci. Int., 1 Jun 2017, 275, 83–89. 2.3 MB. https://doi.org/10.1016/j.forsciint.2017.02.025 #2C-B
Theobald, DS; Maurer, HH. Identification of monoamine oxidase and cytochrome P450 isoenzymes involved in the deamination of phenethylamine-derived designer drugs (2C-series). Biochem. Pharmacol., 1 Jan 2007, 73 (2), 287–297. 365 kB. https://doi.org/10.1016/j.bcp.2006.09.022 #2C-B
EMCDDA. New drugs in Europe, 2011, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 Apr 2012. 401 kB.
Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Anal., 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315
Lladó-Pelfort, L; Celada, P; Riga, MS; Troyano-Rodríguez,, E. Effect of hallucinogens on neuronal activity. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 75-105. 902 kB. https://doi.org/10.1007/7854_2017_473
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
Montenarh, D; Hopf, M; Warth, S; Maurer, HH; Schmidt, P; Ewald, AH. A simple extraction and LC-MS/MS approach for the screening and identification of over 100 analytes in eight different matrices: Detection of 130 analytes in eight biosamples using only one LC-MS/MS method. Drug Test. Anal., 1 Mar 2015, 7 (3), 214-240. 593 kB. https://doi.org/10.1002/dta.1657
Papoutsis, I; Nikolaou, P; Stefanidou, M; Spiliopoulou, C; Athanaselis, S. 25B-NBOMe and its precursor 2C-B: modern trends and hidden dangers. Forensic Toxicol., 1 Jan 2015, 33 (1), 1-11. 365 kB. https://doi.org/10.1007/s11419-014-0242-9
Burns, L; Roxburgh, A; Matthews, A; Bruno, R; Lenton, S; Van Buskirk, J. The rise of new psychoactive substance use in Australia. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 846-849. 422 kB. https://doi.org/10.1002/dta.1626
Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Anal., 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #57 LC,MS,NMR,IR
Cassels, BK; Sáez-Briones, P. DARK classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2448-2458. 648 kB. https://doi.org/10.1021/acschemneuro.8b00215
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 27–37. 497 kB. Rhodium.
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #19i
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB.
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #10e
Martins, D. Analysis of new psychoactive substances: A contribution to forensic chemistry. M. Sc. Thesis, Universidade do Porto, 1 Jan 2014. 2.5 MB. #8 MS,NMR,other
Li, Y; Wang, M; Li, A; Zheng, H; Wei, Y. Identification of the impurities in 2,5-dimethoxy-4-ethylphenethylamine tablets by high performance liquid chromatography mass spectrometry-ion trap-time of flight. Anal. Methods, 24 Nov 2016, 8 (46), 8179–8187. 1.1 MB. https://doi.org/10.1039/C6AY02162J #imp 5
Maurer, HH. Chemistry, pharmacology, and metabolism of emerging drugs of abuse. Ther. Drug Monit., 1 Oct 2010, 32 (5), 544–549. 142 kB. https://doi.org/10.1097/FTD.0b013e3181eea318 #2C-B
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #2C-B
Souza, GA; Arantes, LC; Guedes, TJ; de Oliveira, AC; Marinho, PA; Muñoz, RAA; dos Santos, WTP. Voltammetric signatures of 2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamines on boron-doped diamond electrodes: Detection in blotting paper samples. Electrochem. Commun., 1 Sep 2017, 82, 121–124. 748 kB. https://doi.org/10.1016/j.elecom.2017.08.001 #2C-B other
Cole, MD; Lea, C; Oxley, N. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): a review of the public domain literature. Sci. Justice, 1 Oct 2002, 42 (4), 223–224. 2.0 MB. https://doi.org/10.1016/S1355-0306(02)71832-7 #2C-B
Takahashi, M; Miyake, H; Nagashima, M; Seto, T; Miyatake, N; Suzuki, J; Kamimura, H; Yasuda, I. Analysis and synthesis of psychedelic phenethylamines. Ann. Rep. Tokyo Metr. Inst. P. H., 1 Jan 2003, 54 51–55. 276 kB. #2C-B LC,UV,TLC
Monte, AP; Marona-Lewicka, D; Parker, MA; Wainscott, DB; Nelson, DL; Nichols, DE. Dihydrobenzofuran analogues of hallucinogens. 3. 1 Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups. J. Med. Chem., 1 Jan 1996, 39 (15), 2953–2961. 290 kB. https://doi.org/10.1021/jm960199j #2a
Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #2C-B
Wagmann, L; Brandt, SD; Stratford, A; Maurer, HH; Meyer, MR. Interactions of phenethylamine-derived psychoactive substances of the 2C-series with human monoamine oxidases. Drug Test. Anal., 6 Sep 2018, 11 (2), 318-324. 650 kB. https://doi.org/10.1002/dta.2494 #2C-B
Dowd, CS; Herrick-Davis, K; Egan, C; DuPre, A; Smith, C; Teitler, M; Glennon, RA. 1-[4-(3-Phenylalkyl)phenyl]-2-aminopropanes as 5-HT2A partial agonists. J. Med. Chem., 10 Aug 2000, 43 (16), 3074–3084. 271 kB. https://doi.org/10.1021/jm9906062 #1b NMR,IR
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #2C-B
Passie, T; Brandt, SD. Self-experiments with psychoactive substances: A historical perspective. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 69-110. 563 kB. https://doi.org/10.1007/164_2018_177 #2C-B
Trachsel, D; Nichols, DE; Kidd, S; Hadorn, M; Baumberger, F. 4-Aryl-substituted 2,5-dimethoxyphenethylamines: Synthesis and serotonin 5-HT2A receptor affinities. Chem. Biodiv., 28 May 2008, 6 (5), 692–704. 271 kB. https://doi.org/10.1002/cbdv.200800235 #17 NMR
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S2 Phenethylamines 2C-B
McCorvy, JD. Mapping the binding site of the 5-HT2A receptor using mutagenesis and ligand libraries: Insights into the molecular actions of psychedelics. Ph. D. Thesis, Purdue University, 1 Jan 2012. 3.9 MB. #2C-B
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #HP-008
Monte, AP. Structure-activity relationships of hallucinogens: Design, synthesis, and pharmacological evaluation of a series of conformationally restricted phenethylamines. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Aug 1995. 10.7 MB. #2C-B MS,NMR
Glennon, RA; Bondarev, ML; Khorana, N; Young, R. β-Oxygenated analogues of the 5-HT2A serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J. Med. Chem., 1 Jan 2004, 47 (24), 6034–6041. 146 kB. https://doi.org/10.1021/jm040082s #3a NMR
Cheng, AC; Castagnoli, N. Synthesis and physicochemical and neurotoxicity studies of 1-(4-substituted-2,5-dihydroxyphenyl)-2-aminoethane analogs of 6-hydroxydopamine. J. Med. Chem., 1 Apr 1984, 27 (4), 513–520. 1.2 MB. https://doi.org/10.1021/jm00370a014 #11c NMR
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #2C-B
Sexton, JD; Nichols, CD; Hendricks, PS. Population survey data informing the therapeutic potential of classic and novel phenethylamine, tryptamine, and lysergamide psychedelics. Front. Psychiatry, 11 Feb 2020, 10 (896). 529 kB. https://doi.org/10.3389/fpsyt.2019.00896 #2C-B
Poulie, CBM; Jensen, AA; Halberstadt, AL; Kristensen, JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem. Neurosci., 2 Dec 2020, 11 (23), 3860-3869. 860 kB. https://doi.org/10.1021/acschemneuro.9b00528 #2C-B
Luethi, D; Widmer, R; Trachsel, D; Hoener, MC; Liechti, ME. Monoamine receptor interaction profiles of 4-aryl-substituted 2,5-dimethoxyphenethylamines (2C-BI derivatives). Eur. J. Pharmacol., 1 Jul 2019, 855, 103–111. 983 kB. https://doi.org/10.1016/j.ejphar.2019.05.014 #2C-B
Spoelder, AS; Louwerens, JKG; Krens, SD; Jager, N; LeCouffe, NE; Ruijter, W; Brunt, TM. Unexpected serotonin syndrome, epileptic seizures, and cerebral edema following 2,5‐dimethoxy‐4‐bromophenethylamine ingestion. J. Forensic Sci., 1 Nov 2019, 64 (6), 1950–1952. 139 kB. https://doi.org/10.1111/1556-4029.14214 #2C-B
Meyers-Riggs, B. The halogenated 2Cs. countyourculture, countyourculture: rational exploration of the underground, 29 Sep 2010.
Marcher-Rørsted, E; Halberstadt, AL; Klein, AK; Chatha, M; Jademyr, S; Jensen, AA; Kristensen, JL. Investigation of the 2,5-dimethoxy motif in phenethylamine serotonin 2A receptor agonists. ACS Chem. Neurosci., 26 Mar 2020, 11 (9), 1238-1244. 3.8 MB. https://doi.org/10.1021/acschemneuro.0c00129 #1 LC,MS,NMR
Palamar, JJ; Acosta, P. A qualitative descriptive analysis of effects of psychedelic phenethylamines and tryptamines. Hum. Psychopharmacol. Clin. Exp., 1 Jan 2020, 35 (1), e2719. 764 kB. https://doi.org/10.1002/hup.2719 #2C-B
Elbardisy, HM; Foster, CW; Marron, J; Mewis, RE; Sutcliffe, OB; Belal, TS; Talaat, W; Daabees, HG; Banks, CE. Quick test for determination of N-bombs (Phenethylamine derivatives, NBOMe) using high-performance liquid chromatography: A comparison between photodiode array and amperometric detection. ACS Omega, 10 Sep 2019, 4 (11), 14439–14450. 3.4 MB. https://doi.org/10.1021/acsomega.9b01366 #1c LC
Pottie, E; Cannaert, A; Stove, CP. In vitro structure–activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch. Toxicol., 1 Oct 2020, 94 (10), 3449–3460. 919 kB. https://doi.org/10.1007/s00204-020-02836-w #2C-B
Flanagan, TW; Billac, GB; Landry, AN; Sebastian, MN; Cormier, SA; Nichols, CD. Structure–activity relationship analysis of psychedelics in a rat model of asthma reveals the anti-inflammatory pharmacophore. ACS Pharmacol. Transl. Sci., 9 Apr 2021, 4 (2), 488-502. 13.3 MB. https://doi.org/10.1021/acsptsci.0c00063 #2C-B
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #2C-B
Juncosa, JI; Hansen, M; Bonner, LA; Cueva, JP; Maglathlin, R; McCorvy, JD; Marona-Lewicka, D; Lill, MA; Nichols, DE. Extensive rigid analogue design maps the binding conformation of potent N-benzylphenethylamine 5-HT2A serotonin receptor agonist ligands. ACS Chem. Neurosci., 16 Jan 2013, 4 (1), 96-109. 3.8 MB. https://doi.org/10.1021/cn3000668 #1 MS,NMR
Anon. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) to be placed on emergency temporary schedule I status. JCLIC, 1 Jan 1994, 4 (1), 8-11. 590 kB. GC,MS,IR
Araneda, JF; Baumgarte, M; Lange, M; Maier, AFG; Riegel, SD. Identification of seven psychedelic 2,5‐dimethoxyphenylethylamine‐based designer drugs via benchtop 1H nuclear magnetic resonance spectroscopy. Magn. Reson. Chem., 23 Aug 2021, n/a. 1.2 MB. https://doi.org/10.1002/mrc.5205 #1 NMR
Uchiyama, N; Kawamura, M; Kamakura, H; Kikura-Hanajiri, R; Goda, Y. Analytical data of designated substances (shitei-yakubutsu) controlled by the pharmaceutical affairs law in Japan, Part II: Color test and TLC. Yakugaku Zasshi, 1 Jan 2008, 128 (6), 981–987. 406 kB. https://doi.org/10.1248/yakushi.128.981 #2C-B TLC
Philp, M; Shimmon, R; Stojanovska, N; Tahtouh, M; Fu, S. Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials. Anal. Methods, 1 Jan 2013, 5 (20), 5402. 783 kB. https://doi.org/10.1039/c3ay40511g #4-Bromo-2,5-dimethoxyphenethylam MS,NMR,IR,spot
Kolaczynska, KE; Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of 4-alkoxy-3,5-dimethoxy-phenethylamines (mescaline derivatives) and related amphetamines. Front. Pharmacol., 9 Feb 2022, 12 794254. 1.0 MB. https://doi.org/10.3389/fphar.2021.794254
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #41 In German. MS,NMR,IR
Halberstadt, AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res., 15 Jan 2015, 277, 99–120. 4.1 MB. https://doi.org/10.1016/j.bbr.2014.07.016 #2C-B
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #42, 72
Glennon, RA; Dukat, M; El-Bermawy, M; Law, H; De Los Angeles, J; Teitler, M; King, A; Herrick-Davis, K. Influence of amine substituents on 5-HT2A versus 5-HT2C binding of phenylalkyl- and indolylalkylamines. J. Med. Chem., 1 Jun 1994, 37 (13), 1929–1935. 1.1 MB. https://doi.org/10.1021/jm00039a004 #7 NMR,IR
Poulie, CBM; Pottie, E; Simon, IA; Harpsøe, K; D’Andrea, L; Komarov, IV; Gloriam, DE; Jensen, AA; Stove, CP; Kristensen, JL. Discovery of β-arrestin-biased 25CN-NBOH-derived 5-HT2A receptor agonists. J. Med. Chem., 22 Sep 2022, 65 (18), 12031–12043. 9.5 MB. https://doi.org/10.1021/acs.jmedchem.2c00702 #3 LC,MS,NMR
Clare, BW. The frontier orbital phase angles: Novel QSAR descriptors for benzene derivatives, applied to phenylalkylamine hallucinogens. J. Med. Chem., 24 Sep 1998, 41 (20), 3845–3856. 239 kB. https://doi.org/10.1021/jm980144c #52
Shulgin, AT. 2,5-Dimethoxy-4-bromophenethylamine (2C-B). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 7 Feb 2003.