- TMA
- AMM
- EA-1319
- 3,4,5-Trimethoxyamphetamine
Shulgin, AT. The six trimethoxyphenylisopropylamines (trimethoxyamphetamines). J. Med. Chem., 1 Jan 1966, 9 (3), 445–456. 362 kB. https://doi.org/10.1021/jm00321a058
Peretz, DI; Smythies, JR; Gibson, WC. A new hallucinogen: 3,4,5-Trimethoxyphenyl-β-aminopropane. With notes on the stroboscopic phenomenon. Br. J. Psychiatry, 1 Jan 1955, 101 (423), 317–329. 1.6 MB. https://doi.org/10.1192/bjp.101.423.317 #TMA
Shulgin, AT. Possible implication of myristicin as a psychotropic substance. Nature, 1 Jan 1966, 210, 380–384. 707 kB. https://doi.org/10.1038/210380a0
Shulgin, AT. Psychotomimetic amphetamines: Methoxy 3,4-dialkoxyamphetamines. Experientia, 1 Jan 1964, 20 (7), 366–367. 240 kB. https://doi.org/10.1007/BF02147960 #I
Shulgin, AT; Bunnell, S; Sargent, T. The psychotomimetic properties of 3,4,5-trimethoxyamphetamine. Nature, 1 Jan 1961, 189, 1011–1012. 306 kB. https://doi.org/10.1038/1891011a0 Rhodium.
Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10), 1100–1111. 1.2 MB. https://doi.org/10.1021/jm00256a016 #4 other
Nelson, DL; Lucaites, VL; Wainscott, DB; Glennon, RA. Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, 5-HT2B and 5-HT2C receptors. N-S. Arch. Pharmacol., 1 Jan 1999, 359 (1), 1–6. 66 kB. https://doi.org/10.1007/PL00005315 #TMA
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413
Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017
Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. https://doi.org/10.1124/jpet.106.117507
Scorza, MC; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #18
Zaitsu, K; Katagi, M; Kamata, H; Kamata, T; Shima, N; Miki, A; Iwamura, T; Tsuchihashi, H. Discrimination and identification of the six aromatic positional isomers of trimethoxyamphetamine (TMA) by gas chromatography-mass spectrometry (GC-MS). J. Mass Spectrom., 1 Apr 2008, 43 (4), 528–534. 147 kB. https://doi.org/10.1002/jms.1347
Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. https://doi.org/10.1016/S0376-8716(99)00148-9
Shulgin, AT; Sargent, T; Naranjo, C. The chemistry and psychopharmacology of nutmeg and of several related phenylisopropylamines. In Ethnopharmacologic Search for Psychoactive Drugs; Efron, DH; Holmstedt, B; Kline, NS, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 28 Jan 1967; pp 202–215. 951 kB. #TMA
Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. https://doi.org/10.1038/221537a0 #VIII
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #TMA
Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.
Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. https://doi.org/10.1021/jm00144a009 other
Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. https://doi.org/10.1111/j.2042-7158.1985.tb03072.x #3a
Nichols, DE; Barfknecht, CF; Rusterholz, DB; Benington, F; Morin, RD. Asymmetric synthesis of psychotomimetic phenylisopropylamines. J. Med. Chem., 1 May 1973, 16 (5), 480–483. 515 kB. https://doi.org/10.1021/jm00263a013 #5i,j
Guy, M; Freeman, S; Alder, JF; Brandt, SD. The Henry reaction: spectroscopic studies of nitrile and hydroxylamine by-products formed during synthesis of psychoactive phenylalkylamines. Cent. Eur. J. Chem., 1 Dec 2008, 6 (4), 526–534. 999 kB. https://doi.org/10.2478/s11532-008-0054-z
Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #19 NMR
Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. https://doi.org/10.1016/S0968-0896(03)00437-1 #38
Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017 #33 NMR
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci., 1 Jan 2008, 54 (1), 89–96. 1.9 MB. https://doi.org/10.1248/jhs.54.89
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Weil, AT. The use of nutmeg as a psychotropic agent. Bull. Narc., United Nations Office on Drugs and Crime, 1 Jan 1966. #TMA
Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. https://doi.org/10.1002/omr.1270210611 #3,4,5-TMA NMR
Tsujikawa, K; Kanamori, T; Kuwayama, K; Miyaguchi, H; Iwata, YT; Inoue, H. Analytical profiles for 3,4,5-, 2,4,5-, and 2,4,6-trimethoxyamphetamine. Microgram J., 1 Jan 2006, 4 (1–4), 12–23. 162 kB. #TMA-1 GC,LC,MS,NMR,IR,spot
Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. https://doi.org/10.1021/jm00295a007 #10
Antun, F; Smythies, JR; Benington, F; Morin, RD; Barfknecht, CF; Nichols, DE. Native fluorescence and hallucinogenic potency of some amphetamines. Experientia, 15 Jan 1971, 27 (1), 62–63. 248 kB. https://doi.org/10.1007/BF02137743 other
Pirisi, MA; Nieddu, M; Burrai, L; Carta, A; Briguglio, I; Baralla, E; Demontis, MP; Varoni, MV; Boatto, G. An LC-MS-MS method for quantitative analysis of six trimethoxyamphetamine designer drugs in rat plasma, and its application to a pharmacokinetic study. Forensic Toxicol., 1 Jul 2013, 31 (2), 197–203. 305 kB. https://doi.org/10.1007/s11419-012-0177-y
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #33 Rhodium.
Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. https://doi.org/10.1016/0014-2999(82)90454-X #9
Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0 #3,4,5-TMA
Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027 #43
Glennon, RA; Titeler, M; McKenney, JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 17 Dec 1984, 35 (25), 2505–2511. 332 kB. https://doi.org/10.1016/0024-3205(84)90436-3 #22
Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. https://doi.org/10.1016/S0041-008X(73)80016-X #VII
Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB. #TMA MS,NMR,IR,UV
Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Anal., 1 Jan 2018, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292
Maruyama, Y; Matsumoto, Y; Noguchi, H; Yamazaki, M; Inde, S. Analysis of 2C-B and related compounds of 2C-B. JCCL, 1 Jan 2000, (39), 41–57. 476 kB. #TMA Japanese, English abstract GC,LC,MS,NMR,IR,UV
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #3.10
Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #30
Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #31
Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9 TLC
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #33
Titeler, M; Lyon, RA; Glennon, RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology, 1 Feb 1988, 94 (2), 213–216. 431 kB. https://doi.org/10.1007/BF00176847 #17
Cassels, BK; Sáez-Briones, P. DARK classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2448-2458. 648 kB. https://doi.org/10.1021/acschemneuro.8b00215
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 27–37. 497 kB. Rhodium.
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #22a
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #30
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #10n
Anderson, GM; Castagnoli, N; Kollman, PA. Quantitative structure-activity relationships in the 2,4,5-ring-substituted phenylisopropylamines. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 199–217. 623 kB.
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #LXI
Nagai, F; Nonaka, R; Kamimura, KSH. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur. J. Pharmacol., 22 Mar 2007, 559 (2), 132–137. 399 kB. https://doi.org/10.1016/j.ejphar.2006.11.075 #TMA
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #TMA
Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, . 3.9 MB. #3,4,5-Trimethoxyamphetamine
Nieddu, M; Boatto, G; Pirisi, MA; Azara, E; Marchetti, M. LC–MS analysis of trimethoxyamphetamine designer drugs (TMA series) from urine samples. J. Chromatogr. B, 1 May 2008, 867 (1), 126–130. 305 kB. https://doi.org/10.1016/j.jchromb.2008.03.027 #TMA LC,MS,NMR
Walters, GC; Cooper, PD. Alicyclic analogue of mescaline. Nature, 20 Apr 1968, 218 (5138), 298–300. 3.1 MB. https://doi.org/10.1038/218298a0 #Ib IR
Cooper, PD. Stereospecific synthesis of cis- and trans-2-(3,4,5-trimethoxyphenyl)-cyclopropylamines. Can. J. Chem., 1 Dec 1970, 48 (24), 3882–3888. 452 kB. https://doi.org/10.1139/v70-653 #2 IR
Halberstadt, AL; Chatha, M; Chapman, SJ; Brandt, SD. Comparison of the behavioral effects of mescaline analogs using the head twitch response in mice. J. Psychopharmacol., 1 Mar 2019, 33 (3), 406-414. 901 kB. https://doi.org/10.1177/0269881119826610 #TMA
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #HP-002
Kawaguchi, K; Sugiyama, M; Morifuji, K; Noguchi, H; Akieda, T. Synthesis and analysis of TMA isomers. JCCL, 1 Oct 2007, (47), 73–77. 1.5 MB. #TMA Japanese, English abstract LC,MS,NMR,IR,UV
Julian, EA. Microcrystalline identification of drugs of abuse: The psychedelic amphetamines. J. Forensic Sci., 1 Jul 1990, 35 (4), 821–830. 632 kB. https://doi.org/10.1520/JFS12894J #TMA-1 other
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #TMA
Sadzot, B; Baraban, JM; Glennon, RA; Lyon, RA; Leonhardt, S; Jan, C; Titeler, M. Hallucinogenic drug interactions at human brain 5-HT2 receptors: implications for treating LSD-induced hallucinogenesis. Psychopharmacology, 1 Aug 1989, 98 (4), 495–499. 895 kB. https://doi.org/10.1007/BF00441948 #3,4,5 TMA
Fenderson5555. The trimethoxylated amphetamines (TMA-x). , 9 Dec 2012. . Fenderson5555 7.7 MB.
Clancy, L; Philp, M; Shimmon, R; Fu, S. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test. Anal., 19 Aug 2020, 13 (5), 929-943. 11.3 MB. https://doi.org/10.1002/dta.2905 #3,4,5-trimethoxyamphetamine
Fenderson5555. Mescaline, part 1 of 3. , 14 Aug 2019. . Fenderson5555 8.4 MB. #TMA
Fenderson5555. Trifluoromethylated phenethylamines. , 17 May 2021. . Fenderson5555 23.7 MB. #TMA
Bailey, K; Legault, D. Carbon-13 nuclear magnetic resonance spectra of trimethoxyamphetamines—A comparison of predicted with experimental results. J. Forensic Sci., 1 Apr 1981, 26 (2), 368–372. 321 kB. https://doi.org/10.1520/JFS11370J #3,4,5-TMA NMR
Benington, F; Morin, RD. The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. Med. Chem., 1 Jul 1968, 11 (4), 896–897. 244 kB. https://doi.org/10.1021/jm00310a048 #2.16
Kolaczynska, KE; Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of 4-alkoxy-3,5-dimethoxy-phenethylamines (mescaline derivatives) and related amphetamines. Front. Pharmacol., 9 Feb 2022, 12 794254. 1.0 MB. https://doi.org/10.3389/fphar.2021.794254 #6
Shulgin, AT. Psychotomimetic agents related to the catecholamines. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 14–19. 782 kB. https://doi.org/10.1080/02791072.1969.10524409 #XIIb
Clare, BW. Structure-activity correlations for psychotomimetics. 1. Phenylalkylamines: electronic, volume, and hydrophobicity parameters. J. Med. Chem., 1 Feb 1990, 33 (2), 687–702. 2.8 MB. https://doi.org/10.1021/jm00164a036 #38
Shulgin, AT. Psychotomimetic agents related to mescaline. Experientia, 1 Jan 1963, 19 (3), 127–128. 264 kB. https://doi.org/10.1007/BF02171586
Shulgin, AT. Mescaline: the chemistry and pharmacology of its analogs. Lloydia, 1 Jan 1973, 36 (1), 46–58. 5.6 MB. #13
Nichols, DE; Shulgin, AT; Dyer, DC. Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci., 15 Aug 1977, 21 (4), 569–576. 320 kB. https://doi.org/10.1016/0024-3205(77)90099-6 #21
Glennon, RA; Rosecrans, JA. Indolealkylamine and phenalkylamine hallucinogens: A brief overview. Neurosci. Biobehav. Rev., 1 Jan 1982, 6 (4), 489–497. 895 kB. https://doi.org/10.1016/0149-7634(82)90030-6 #8r
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #10
Clare, BW. The frontier orbital phase angles: Novel QSAR descriptors for benzene derivatives, applied to phenylalkylamine hallucinogens. J. Med. Chem., 24 Sep 1998, 41 (20), 3845–3856. 239 kB. https://doi.org/10.1021/jm980144c #22