- MDA
- 3,4-Methylenedioxyamphetamine
- Amphedoxamine
- EA-1298
- 1-(2H-1,3-Benzodioxol-5-yl)propan-2-amine
- 1-(1,3-Benzodioxol-5-yl)propan-2-amine
Naranjo, C; Shulgin, AT; Sargent, T. Evaluation of 3,4-methylenedioxyamphetamine (MDA) as an adjunct to psychotherapy. Med. Pharmacol. Exp., 1 Jan 1967, 17 (4), 359–364. 694 kB. https://doi.org/10.1159/000137100 #MDA
Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. https://doi.org/10.1002/jps.2600690220 #IIa
Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.
Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. https://doi.org/10.1002/cbdv.200690035 #1a NMR
Roman, DL; Saldaña, SN; Nichols, DE; Carroll, FI; Barker, EL. Distinct molecular recognition of psychostimulants by human and Drosophila serotonin transporters. J. Pharmacol. Exp. Ther., 1 Jan 2004, 308 (2), 679–687. 519 kB. https://doi.org/10.1124/jpet.103.057836
Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019
Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2.2 MB. https://doi.org/10.1520/JFS12874J
Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413
Scorza, MC; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #31
Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. https://doi.org/10.1016/0014-2999(87)90173-7
Johnson, MP; Hoffman, AJ; Nichols, DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 16 Dec 1986, 132 (2–3), 269–276. 559 kB. https://doi.org/10.1016/0014-2999(86)90615-1 #MDA
Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. https://doi.org/10.1007/BF03033455
de la Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. https://doi.org/10.1016/j.tips.2004.08.001
Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. https://doi.org/10.1016/j.forsciint.2004.06.016 #T1-8 MS
Shulgin, AT; Sargent, T; Naranjo, C. The chemistry and psychopharmacology of nutmeg and of several related phenylisopropylamines. In Ethnopharmacologic Search for Psychoactive Drugs; Efron, DH; Holmstedt, B; Kline, NS, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 28 Jan 1967; pp 202–215. 951 kB. #MDA
Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. https://doi.org/10.1038/221537a0 #XV
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #MDA
White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. https://doi.org/10.1016/0027-5107(77)90210-X #1
Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.
Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1.5 MB. #IIA
Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. https://doi.org/10.1021/jm00144a009 other
Shulgin, AT; Jacob, P. Potential misrepresentation of 3,4-methylene-dioxyamphetamine (MDA). A toxicological warning. J. Anal. Toxicol., 1 Jan 1982, 6 (2), 71–75. 5.6 MB. https://doi.org/10.1093/jat/6.2.71 #2 GC,MS,IR
Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. https://doi.org/10.1111/j.2042-7158.1985.tb03072.x #3b
Nichols, DE; Hoffman, AJ; Oberlender, RA; Jacob, P; Shulgin, AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: Representatives of a novel therapeutic class. J. Med. Chem., 1 Oct 1986, 29 (10), 2009–2015. 1.0 MB. https://doi.org/10.1021/jm00160a035 #1a MS,NMR
McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M
Nichols, DE; Lloyd, DH; Hoffman, AJ; Nichols, MB; Yim, GKW. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J. Med. Chem., 1 May 1982, 25 (5), 530–535. 804 kB. https://doi.org/10.1021/jm00347a010 #1 NMR,IR
Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 305–313. 10.7 MB. https://doi.org/10.1080/02791072.1986.10472362 #MDA
Nichols, DE; Oberlender, R; Burris, K; Hoffman, AJ; Johnson, MP. Studies of dioxole ring substituted 3,4-methylenedioxyamphetamine (MDA) analogues. Pharmacol. Biochem. Behav., 1 Nov 1989, 34 (3), 571–576. 680 kB. https://doi.org/10.1016/0091-3057(89)90560-1 #MDA
Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 23 Jul 1991, 200 (1), 9–16. 1.1 MB. https://doi.org/10.1016/0014-2999(91)90659-E #MDA
Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 23 Jul 1991, 200 (1), 53–58. 714 kB. https://doi.org/10.1016/0014-2999(91)90664-C #MDA
Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB. #MDA LC,MS,NMR
Thiessen, PN; Cook, DA. The properties of 3,4-methylenedioxyamphetamine (MDA). I. A review of the literature. Clin. Toxicol., 1 Jan 1973, 6 (1), 45–52. 367 kB. https://doi.org/10.3109/15563657308991042
Guy, M; Freeman, S; Alder, JF; Brandt, SD. The Henry reaction: spectroscopic studies of nitrile and hydroxylamine by-products formed during synthesis of psychoactive phenylalkylamines. Cent. Eur. J. Chem., 1 Dec 2008, 6 (4), 526–534. 999 kB. https://doi.org/10.2478/s11532-008-0054-z #4b GC,MS,NMR
Benzenhõfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. https://doi.org/10.1111/j.1360-0443.2010.02948.x
Pentney, AR. An exploration of the history and controversies surrounding MDMA and MDA. J. Psychoactive Drugs, 1 Jul 2001, 33 (3), 213–221. 871 kB. https://doi.org/10.1080/02791072.2001.10400568
Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. https://doi.org/10.1016/S0304-3940(02)00823-6
Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. https://doi.org/10.1016/0091-3057(88)90001-9
Glennon, RA; Young, R. MDA: An agent that produces stimulus effects similar to those of 3,4-DMA, LSD and cocaine. Eur. J. Pharmacol., 23 Mar 1984, 99 (2–3), 249–250. 139 kB. https://doi.org/10.1016/0014-2999(84)90250-4
Oberlender, R; Nichols, DE. (+)-N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxymethamphetamine-like behavioral activity. J. Pharmacol. Exp. Ther., 1 Dec 1990, 255 (3), 1098–1106. 1.9 MB. #MDA
Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014 #20 NMR
Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. https://doi.org/10.1016/S0968-0896(03)00437-1 #32
Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B #S26, S27
Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017 #25 NMR
Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 1 Jan 2012, 9 (1), 27–32. 496 kB.
Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003
Baggott, MJ; Siegrist, JD; Galloway, GP; Robertson, LC; Coyle, JR; Mendelson, JE. Investigating the mechanisms of hallucinogen-induced visions using 3,4-methylenedioxyamphetamine (MDA): A randomized controlled trial in humans. PLOS ONE, 2 Dec 2010, 5 (12), e14074. 1.4 MB. https://doi.org/10.1371/journal.pone.0014074
Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 27 Aug 2002, 9, 1634–1638. 115 kB. https://doi.org/10.1039/b200607c
Vohlken, BA; Layton, SM. Instrumental separation of 3,4-methylenedioxyamphetamine (MDA) from 1-(3,4- methylenedioxyphenyl)-2-propanol, a co-eluting compound. Microgram J., 1 Jan 2003, 1 (1–2), 32–36. 208 kB. MS
Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB. MS
Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. https://doi.org/10.1021/jm00295a007 #18
Glennon, RA; Young, R. MDA: A psychoactive agent with dual stimulus effects. Life Sci., 23 Jan 1984, 34 (4), 379–383. 283 kB. https://doi.org/10.1016/0024-3205(84)90627-1 #MDA
Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 #48 Rhodium.
Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027 #39
Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0 #MDA
Jackson, B; Reed, A. Another abusable amphetamine. JAMA, 2 Feb 1970, 211 (5), 830–830. 186 kB. https://doi.org/10.1001/jama.1970.03170050064024 #MDA
Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. https://doi.org/10.1016/S0041-008X(73)80016-X #IV
Ziporyn, T. A growing industry and menace: Makeshift laboratory’s designer drugs. JAMA, 12 Dec 1986, 256 (22), 3061–3063. 486 kB. https://doi.org/10.1001/jama.1986.03380220011003
Passie, T; Benzenhöfer, U. The history of MDMA as an underground drug in the United States, 1960–1979. J. Psychoactive Drugs, 14 Mar 2016, 48 (2), 67–75. 1.0 MB. https://doi.org/10.1080/02791072.2015.1128580
Bernschneider-Reif, S; Öxler, F; Freudenmann, RW. The origin of MDMA (“Ecstasy”) – Separating the facts from the myth. Pharmazie, 1 Nov 2006, 61 (11), 966–972. 315 kB.
NIMH. MDA. National Clearinghouse for Drug Abuse Information Report Series, , 25 (1), 9. 251 kB. #MDA
Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB. #MDA MS,NMR,IR,UV
Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., 1 Aug 1975, 47 (9), 841a–844a. 1.6 MB. https://doi.org/10.1021/ac60359a050
Meyers, FH; Rose, AJ; Smith, DE. Incidents involving the Haight-Ashbury population and some uncommonly used drugs. J. Psychedelic Drugs, 1 Apr 1968, 1 (2), 139–146. 842 kB. https://doi.org/10.1080/02791072.1968.10524531
Weil, AT. The Love Drug. J. Psychedelic Drugs, 1 Oct 1976, 8 (4), 335–337. 1.3 MB. https://doi.org/10.1080/02791072.1976.10471861
Yensen, R; Leo, FBD; Rhead, JC; Richards, WA; Soskin, RA; Turek, B; Kurland, AA. MDA-assisted psychotherapy with neurotic outpatients: a pilot study. J. Nerv. Ment. Dis., 1 Oct 1976, 163 (4), 233–245. 893 kB. https://doi.org/10.1097/00005053-197610000-00002
Turek, IS; Soskin, RA; Kurland, AA. Methylenedioxyamphetamine (MDA)–Subjective Effects. J. Psychedelic Drugs, 1 Jan 1974, 6 (1), 7–14. 3.9 MB. https://doi.org/10.1080/02791072.1974.10471499
Smith, DE. The psychotomimetic amphetamines with special reference to DOM (STP) toxicity. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 37–41. 709 kB. https://doi.org/10.1080/02791072.1969.10524413 #MDA
Friedhoff, AJ; Lynn, FA; Rosenblatt, G; Holden, A. Preliminary study of a new anti-depressant drug. J. Nerv. Ment. Dis., 1 Aug 1958, 127 (2), 185–190. 481 kB. https://doi.org/10.1097/00005053-195808000-00011 #SKF #5
Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 1 Jan 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9
Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Anal., 1 Jan 2018, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292
Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, 11 Feb 2011, 50, 63-82. 627 kB. Japanese, English abstract LC,MS,NMR,IR
Clark, CR. Synthesis and analytical profiles for regioisomeric and isobaric amines related to MDMA, MDEA and MBDB: Differentiation of drug and non-drug substances of mass spectral equivalence, US DOJ, 1 Oct 2011. 3.9 MB. #MDA
Neudõrffer, A; Mueller, M; Martinez, C; Mechan, A; McCann, U; Ricaurte, GA; Largeron, M. Synthesis and neurotoxicity profile of 2,4,5-trihydroxymethamphetamine and its 6-(N-acetylcystein-S-yl) conjugate. Chem. Res. Toxicol., 20 Jun 2011, 24 (6), 968–278. 4.8 MB. https://doi.org/10.1021/tx2001459 MS,NMR,UV
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #3.17
Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #27
Dal Cason, TA; Meyers, JA; Lankin, DC. Proton and carbon-13 NMR assignments of 3,4-methylenedioxyamphetamine (MDA) and some analogues of MDA. Forensic Sci. Int., 18 Apr 1997, 86 (1–2), 15-24. 1.0 MB. https://doi.org/10.1016/S0379-0738(97)02102-6 #MDA NMR
Burns, DT; Lewis, RJ; Stevenson, P. Determination of 3,4-methylenedioxyamphetamine analogues (“ecstasy”) by proton nuclear magnetic resonance spectrometry. Anal. Chim. Acta, 10 Mar 1997, 339 (3), 259-263. 405 kB. https://doi.org/10.1016/S0003-2670(96)00485-0 NMR
Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 879 kB. https://doi.org/10.1007/7854_2016_466
King, LA. New phenethylamines in Europe. Drug Test. Anal., 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570
Titeler, M; Lyon, RA; Glennon, RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology, 1 Feb 1988, 94 (2), 213–216. 431 kB. https://doi.org/10.1007/BF00176847 #15,16
Cassels, BK; Sáez-Briones, P. DARK classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2448-2458. 648 kB. https://doi.org/10.1021/acschemneuro.8b00215
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB. #2
Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 27–37. 497 kB. Rhodium.
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #22o
Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 8.1 MB. #15
Shulgin, AT; Jacob, P. 1-(3,4-Methylenedioxyphenyl)-3-aminobutane: A potential toxicological problem. Clin. Toxicol., 1 Jan 1982, 19 (1), 109–110. 77 kB. https://doi.org/10.3109/15563658208990371
Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1
Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1 Jan 1982; Vol. 55 (3), pp 3–29. 928 kB. https://doi.org/10.1007/978-3-642-67770-0_1 #10m
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #LXXIX
Simmler, LD; Liechti, ME. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 143-164. 298 kB. https://doi.org/10.1007/164_2018_113
Milhazes, N; Cunha-Oliveira, T; Martins, P; Garrido, J; Oliveira, C; Rego, AC; Borges, F. Synthesis and cytotoxic profile of 3,4-methylenedioxymethamphetamine (“Ecstasy”) and its metabolites on undifferentiated PC12 cells: A putative structure-toxicity relationship. Chem. Res. Toxicol., 1 Oct 2006, 19 (10), 1294–2304. 204 kB. https://doi.org/10.1021/tx060123i #11 MS,NMR,other
Broadley, KJ. The vascular effects of trace amines and amphetamines. Pharmacol. Ther., 1 Mar 2010, 125 (3), 363–375. 1.1 MB. https://doi.org/10.1016/j.pharmthera.2009.11.005 #3,4-methylenedioxyamphetamine (M
Casale, JF; Hays, PA. The characterization of 5- and 6-(2-aminopropyl)-2,3-dihydrobenzofuran. Microgram J., 1 Jan 2011, 8 (2), 62–74. 1.0 MB. #3 GC,MS,NMR,IR
Nichols, DF; Oberlender, R. Structure-activity relationships of MDMA and related compounds: A new class of psychoactive agents? In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 105–131. 733 kB. https://doi.org/10.1007/978-1-4613-1485-1_7 #3
Gibb, JW; Stone, D; Johnson, M; Hanson, GR. Neurochemical effects of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 133–150. 659 kB. https://doi.org/10.1007/978-1-4613-1485-1_8 #MDA
Borth, S; Hänsel, W; Rösner, P; Junge, T. Synthesis of 2,3- and 3,4-methylenedioxyphenylalkylamines and their regioisomeric differentiation by mass spectral analysis using GC-MS-MS. Forensic Sci. Int., 11 Dec 2000, 114 (3), 139–153. 471 kB. https://doi.org/10.1016/S0379-0738(00)00296-6 #2a GC,MS,NMR
Bishop, SC; McCord, BR; Gratz, SR; Loeliger, JR; Witkowski, MR. Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector. J. Forensic Sci., 1 Mar 2005, 50 (2), 1–10. 597 kB. https://doi.org/10.1520/JFS2004239 #MDA LC,MS,UV,other
Lurie, IS; Bethea, MJ; McKibben, TD; Hays, PA; Pellegrini, P; Sahai, R; Garcia, AD; Weinberger, R. Use of dynamically coated capillaries for the routine analysis of methamphetamine, amphetamine, MDA, MDMA, MDEA, and cocaine using capillary electrophoresis. J. Forensic Sci., 1 Sep 2001, 46 (5), 1025–1032. 346 kB. https://doi.org/10.1520/JFS15096J #MDA other
Walline, CC; Nichols, DE; Carroll, FI; Barker, EL. Comparative molecular field analysis using selectivity fields reveals residues in the third transmembrane helix of the serotonin transporter associated with substrate and antagonist recognition. J. Pharmacol. Exp. Ther., 1 Jun 2008, 325 (3), 791–800. 269 kB. https://doi.org/10.1124/jpet.108.136200 #MDA
Passie, T; Brandt, SD. Self-experiments with psychoactive substances: A historical perspective. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 69-110. 563 kB. https://doi.org/10.1007/164_2018_177 #MDA
Zamberlan, F; Sanz, C; Vivot, RM; Pallavicini, C; Erowid, F; Erowid, E; Tagliazucchi, E. The varieties of the psychedelic experience: A preliminary study of the association between the reported subjective effects and the binding affinity profiles of substituted phenethylamines and tryptamines. Front. Integr. Neurosci., 8 Nov 2018, 12 (54). 5.0 MB. https://doi.org/10.3389/fnint.2018.00054 #MDA
Dal Cason, TA. The characterization of some 3,4-methylenedioxyphenylisopropylamine (MDA) analogs. J. Forensic Sci., 1 Jul 1989, 34 (4), 928–961. 734 kB. https://doi.org/10.1520/JFS12722J #1 Rhodium. GC,MS,NMR,IR
Shulgin, AT; Nichols, DE. Characterization of three new psychotomimetics. In The Psychopharmacology of Hallucinogens; Stillman, RC; Willette, RE, Eds., Pergamon, 1 Jan 1978; pp 74–83. 210 kB. https://doi.org/10.1016/B978-0-08-021938-7.50010-2 #5 A different layout of the same paper
Luethi, D; Liechti, ME. Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int. J. Neuropsychoph., 1 Oct 2018, 21 (10), 926–931. 254 kB. https://doi.org/10.1093/ijnp/pyy047 #S1 Phenethylamines MDA
Glennon, RA; Liebowitz, SM; Mack, EC. Serotonin receptor binding affinities of several hallucinogenic phenylalkylamine and N,N-dimethyltryptamine analogs. J. Med. Chem., 1 Aug 1978, 21 (8), 822–825. 597 kB. https://doi.org/10.1021/jm00206a022 #7
Dunlap, LE; Andrews, AM; Olson, DE. DARK classics in chemical neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chem. Neurosci., 17 Oct 2018, 9 (10), 2408–2427. 940 kB. https://doi.org/10.1021/acschemneuro.8b00155 #14
Bork, W; Dahlenburg, R; Gimbel, M; Jacobsen-Bauer, A; Zörntlein, S. Herleitung Von Grenzwerten Der „nicht Geringen Menge“ Im Sinne Des Btmg. Toxichem Krimtech, 1 Jan 2019, 86 (1), 5–91. 4.4 MB. #PP-018
Passie, T. The early use of MDMA (‘Ecstasy’) in psychotherapy (1977–1985). Drug Science, Policy and Law, 1 Jan 2018, 4, 1-19. 215 kB. https://doi.org/10.1177/2050324518767442 #MDA
Julian, EA. Microcrystalline identification of drugs of abuse: The psychedelic amphetamines. J. Forensic Sci., 1 Jul 1990, 35 (4), 821–830. 632 kB. https://doi.org/10.1520/JFS12894J #MDA other
Oberlender, RA. Stereoselective aspects of hallucinogenic drug action and drug discrimination studies of entactogens. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 May 1989. 8.2 MB. #S-MDA, R-MDA MS,NMR,IR,other
Halberstadt, AL; Chatha, M; Klein, AK; Wallach, J; Brandt, SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology, 1 May 2020, 167, 107933. 2.4 MB. https://doi.org/10.1016/j.neuropharm.2019.107933 #MDA
Sadzot, B; Baraban, JM; Glennon, RA; Lyon, RA; Leonhardt, S; Jan, C; Titeler, M. Hallucinogenic drug interactions at human brain 5-HT2 receptors: implications for treating LSD-induced hallucinogenesis. Psychopharmacology, 1 Aug 1989, 98 (4), 495–499. 895 kB. https://doi.org/10.1007/BF00441948 #MDA
Sáez-Briones, P; Hernández, A. MDMA (3,4-Methylenedioxymethamphetamine) Analogues as Tools to Characterize MDMA-Like Effects: An Approach to Understand Entactogen Pharmacology. Curr. Neuropharmacol., 1 Sep 2013, 11 (5), 521–534. 1.4 MB. https://doi.org/10.2174/1570159X11311050007 #MDA
Luethi, D; Kolaczynska, KE; Walter, M; Suzuki, M; Rice, KC; Blough, BE; Hoener, MC; Baumann, MH; Liechti, ME. Metabolites of the ring-substituted stimulants MDMA, methylone and MDPV differentially affect human monoaminergic systems. J. Psychopharmacol., 1 Jul 2019, 33 (7), 831–841. 492 kB. https://doi.org/10.1177/0269881119844185 #MDA
Hägele, JS; Basrak, M; Schmid, MG. Enantioselective separation of novel psychoactive substances using a Lux® AMP 3 μm column and HPLC-UV. J. Pharm. Biomed. Anal., 5 Feb 2020, 179, 112967. 3.6 MB. https://doi.org/10.1016/j.jpba.2019.112967 #B0 LC
Brandt, SD; Walters, HM; Partilla, JS; Blough, BE; Kavanagh, PV; Baumann, MH. The psychoactive aminoalkylbenzofuran derivatives, 5-APB and 6-APB, mimic the effects of 3,4-methylenedioxyamphetamine (MDA) on monoamine transmission in male rats. Psychopharmacology, 1 Sep 2020, 237 (12), 3703-3714. 1.3 MB. https://doi.org/10.1007/s00213-020-05648-z #MDA
Nichols, DE. Structure-activity relationships of phenethylamine hallucinogens. J. Pharm. Sci., 1 Aug 1981, 70 (8), 839–849. 1.4 MB. https://doi.org/10.1002/jps.2600700802 #III, XII
Folen, VA. X-Ray powder diffraction data for some drugs, excipients, and adulterants in illicit samples. J. Forensic Sci., 1 Apr 1975, 20 (2), 348–372. 502 kB. https://doi.org/10.1520/JFS10282J #50,51 other
Squella, JA; Cassels, BK; Arata, M; Bavestrello, MP; Nuñez-Vergara, LJ. Electrochemical oxidation of methylenedioxyamphetamines. Talanta, 1 Sep 1993, 40 (9), 1379–1384. 390 kB. https://doi.org/10.1016/0039-9140(93)80214-C #MDA NMR,UV
Laing, RR. The disposition of Nicholas Sand’s conspiracy to traffic in LSD, MDA, MDMA and DMT charges. JCLIC, 1 Jul 1998, 8 (3), 15-16. 575 kB.
Pearson, JR; Rowe, JE; Mitchell, WJ; Sette, RMD. Explorations with ecstacy and amphetamine derivatives. JCLIC, 1 Jan 1998, 8 (1), 29-30. 562 kB. #4: MDA
Sorokin, V; Beljaev, A; Ponkratov, K. Expert examination of MDA. JCLIC, 1 Jul 1993, 3 (3), 13-15. 556 kB. IR
Maroney, K; Davis, S; Painter, B. The potential use of copper catalysts in the clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA). JCLIC, 1 Oct 2015, 25 (4), 12-20. 641 kB. GC
Trotter, B; Donnelly, C; Salouros, H. Manufacture of 3,4–methylenedioxyamphetamine from helional encountered in Australia. JCLIC, 1 Jan 2013, 23 (1), 4-4. 364 kB.
Maroge, W; Bordelon, JA; Katz, JM; Zhivago, VR. Large fentanyl and MDA laboratory in Los Angeles, California. JCLIC, 1 Apr 2006, 16 (2), 12–13. 180 kB.
Mesley, RJ; Evans, WH. Infrared identification of some hallucinogenic derivatives of tryptamine and amphetamine. J. Pharm. Pharmacol., 1 May 1970, 22 (5), 321–332. 775 kB. https://doi.org/10.1111/j.2042-7158.1970.tb08533.x #MDA IR
Dal Cason, TA; Corbett, CA; Poole, PK; de Haseth, JA; Gouldthorpe, DK. An unusual clandestine laboratory synthesis of 3,4-methylenedioxyamphetamine (MDA). Forensic Sci. Int., 30 Nov 2012, 223 (1–3), 279–291. 898 kB. https://doi.org/10.1016/j.forsciint.2012.10.002 #MDA
DeMayo, MM; Briglia, EJ; Dal Cortivo, L. Colorimetric determination of 3,4-methylenedioxyamphetamine (MDA). J. Forensic Sci., 1 Jul 1972, 17 (3), 444–446. 276 kB. https://doi.org/10.1520/JFS10130J #MDA spot
Soine, WH; Shark, RE; Agee, DT. Differentiation of 2,3-methylenedioxyamphetamine from 3,4-methylenedioxyamphetamine. J. Forensic Sci., 1 Apr 1983, 28 (2), 386–390. 355 kB. https://doi.org/10.1520/JFS11519J #3,4-MDA GC,MS,NMR,IR,UV,TLC
Kram, TC. Analysis of illicit drug exhibits by hydrogen-1 nuclear magnetic resonance spectroscopy. J. Forensic Sci., 1 Jul 1978, 23 (3), 456–469. 497 kB. https://doi.org/10.1520/JFS10692J #MDA NMR
Canfield, DV; Lorimer, P; Epstein, RL. Gas chromatographic analysis of amphetamine derivatives and morpholine-related drugs. J. Forensic Sci., 1 Apr 1977, 22 (2), 429–433. 303 kB. https://doi.org/10.1520/JFS10605J #3,4-Methylenedioxyamphetamine GC
Philp, M; Shimmon, R; Stojanovska, N; Tahtouh, M; Fu, S. Development and validation of a presumptive colour spot test method for the detection of piperazine analogues in seized illicit materials. Anal. Methods, 1 Jan 2013, 5 (20), 5402. 783 kB. https://doi.org/10.1039/c3ay40511g #3,4-MDA MS,NMR,IR,spot
Benington, F; Morin, RD. The chemorelease of norepinephrine from mouse hearts by substituted amphetamines. J. Med. Chem., 1 Jul 1968, 11 (4), 896–897. 244 kB. https://doi.org/10.1021/jm00310a048 #2.13
Kolaczynska, KE; Ducret, P; Trachsel, D; Hoener, MC; Liechti, ME; Luethi, D. Pharmacological characterization of 3,4-methylenedioxyamphetamine (MDA) analogs and two amphetamine-based compounds: N,α-DEPEA and DPIA. Eur. Neuropsychopharmacol., 1 Jun 2022, 59, 9–22. 1.5 MB. https://doi.org/10.1016/j.euroneuro.2022.03.006 #MDA
Shulgin, AT. Psychotomimetic agents related to the catecholamines. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 14–19. 782 kB. https://doi.org/10.1080/02791072.1969.10524409 #XIIIa
Clare, BW. Structure-activity correlations for psychotomimetics. 1. Phenylalkylamines: electronic, volume, and hydrophobicity parameters. J. Med. Chem., 1 Feb 1990, 33 (2), 687–702. 2.8 MB. https://doi.org/10.1021/jm00164a036 #48
Shulgin, AT. Mescaline: the chemistry and pharmacology of its analogs. Lloydia, 1 Jan 1973, 36 (1), 46–58. 5.6 MB. #33
Nichols, DE; Shulgin, AT; Dyer, DC. Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci., 15 Aug 1977, 21 (4), 569–576. 320 kB. https://doi.org/10.1016/0024-3205(77)90099-6 #25
Glennon, RA; Rosecrans, JA. Indolealkylamine and phenalkylamine hallucinogens: A brief overview. Neurosci. Biobehav. Rev., 1 Jan 1982, 6 (4), 489–497. 895 kB. https://doi.org/10.1016/0149-7634(82)90030-6 #8o,p,q
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #15
Nichols, DE; Marona-Lewicka, D; Huang, X; Johnson, MP. Novel serotonergic agents. Drug Des. Discovery, 1 Feb 1993, 9 (3–4), 299–312. 4.7 MB. #MDA
Casale, JF; Hays, PA; Klein, RFX. Synthesis and characterization of the 2,3-methylenedioxyamphetamines. J. Forensic Sci., 1 May 1995, 40 (3), 391–400. 500 kB. https://doi.org/10.1520/JFS13793J #3,4-MDA GC,MS,NMR,IR
Clare, BW. The frontier orbital phase angles: Novel QSAR descriptors for benzene derivatives, applied to phenylalkylamine hallucinogens. J. Med. Chem., 24 Sep 1998, 41 (20), 3845–3856. 239 kB. https://doi.org/10.1021/jm980144c #30
Kostrzewa, RM. Selective neurotoxins, chemical tools to probe the mind: The first thirty years and beyond. Neurotox. Res., 1 Mar 1999, 1 (1), 3–25. 3.6 MB. https://doi.org/10.1007/BF03033336 #MDA
Shulgin, AT. Making MDA, MDEA, MDMA. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Mar 2001.
Azoury, M; Zelkowicz, A; Goren, Z; Almog, J. Evaluation of ninhydrin analogues and other electron-deficient compounds as spray reagents for drugs on thin layer chromatograms. Microgram J., 1 Jan 2003, 1 (1–2), 23–31. 318 kB. spot
Makino, Y; Kurobane, S; Miyasaka, K. Profiling of ecstasy tablets seized in Japan. Microgram J., 1 Jul 2003, 1 (3–4), 169–176. 614 kB.
Błachut, D; Wojtasiewicz, K; Czarnocki, Z; Szukalski, B. The analytical profile of some 4-methylthioamphetamine (4-MTA) homologues. Forensic Sci. Int., 20 Nov 2009, 192 (1–3), 98–114. 683 kB. https://doi.org/10.1016/j.forsciint.2009.08.009 #15, MDA GC,MS,NMR,IR