Go to PiHKAL • info home
Browse the short index of PiHKAL phenethylamines. Read book II of PiHKAL
Search for phenethylamines and related structures Beyond PiHKAL—Selected writings by Sasha and others. Explore phenethylamine structures and analogues
The essential oils and their amphetamine analogues How PiHKAL • info differs from the printed version
Go to TiHKAL • info home
Book II of PiHKAL: A Chemical Love Story, by Alexander & Ann Shulgin #6: ALEPH-6
#6 ALEPH-6: 2,5-Dimethoxy-4-phenylthioamphetamine

#6 ALEPH-6 SYNTHESIS: To a 300 mL three-neck round-bottom flask set up with a magnetic stirrer and protected with a N2 atmosphere, there was added 75 mL hexane, 3.5 g tetramethylethylenediamine, and 4.2 g p-dimethoxybenzene. The reaction mixture was cooled to 0 °C with an external ice bath, and there was then added 19 mL of 1.6 M butyllithium in hexane. With stirring, the reaction was brought up to room temperature, and there were produced loose, creamy solids. There was then added, as a solid and portionwise, 6.6 g diphenyldisulfide which resulted in an exothermic reaction and the production of a nearly clear solution. After stirring an additional 10 min, the reaction was quenched in 500 mL of dilute NaOH. The hexane phase was separated, and the aqueous phase extracted with 4×100 mL CH2Cl2 The organic extracts were combined, washed with dilute HCl and the solvents were removed under vacuum to provide 6.0 g of 2,5-dimethoxyphenyl phenyl sulfide as an impure amber oil. A small sample was saved for microanalysis and NMR, and the remainder converted to the corresponding benzaldehyde.

A mixture of 6.1 g POCl3 and 5.4 g N-methylformanilide was heated for 3 min on the steam bath, and then added to the remainder of the above-described 2,5-dimethoxyphenyl phenyl sulfide. The reaction became immediately a deep red and, after heating on the steam bath for 0.5 h, was dumped into a large quantity of H2O, producing a granular brown solid. This was removed by filtration, and washed sparingly with cold MeOH (the washes were saved). The resulting pale yellow solids were recrystallized from 20 mL boiling absolute EtOH providing, after cooling, filtration and air drying, 4.4 g of extremely pale yellow crystals of 2,5-dimethoxy-4-(phenylthio)benzaldehyde. This had a mp of 119–119.5 °C. All washes and mother liquors were combined, flooded with H2O and extracted with CH2Cl2. This solvent was removed under vacuum, and the residue (a viscous oil) was dissolved in a little EtOH which, on cooling in dry ice, gave 1.2 g of a second crop of the aldehyde, mp 117–119 °C. Recrystallization from 5 mL 95% EtOH gave an additional 0.4 g product with a mp of 118–119 °C. This mp was not improved by recrystallization from cyclohexane. The NMR specrum was excellent, with OCH3 singlets (3H) at 3.45 and 3.80 ppm; ArH singlets at 6.28 and 7.26 ppm, the C6H5 as a broad peak centered at 7.50, and the CHO proton at 10.37 ppm.

A solution of 4.4 g 2,5-dimethoxy-4-(phenylthio)benzaldehyde in 32 mL nitroethane was treated with 0.8 g anhydrous ammonium acetate and heated on the steam bath for 21 h. The excess solvent/reagent was removed under vacuum, leaving a dark red oil as residue. After much diddling and fiddling around, this set up as a crystalline mass. These solids were ground under 20 mL cold MeOH and filtered, providing 5.3 g of the crude nitrostyrene as an orange crystalline residue product after air-drying. This was ground up under 10 mL MeOH, the insolubles collected by filtration, washed with a little MeOH, and air dried to provide 5.3 g crude 1-(2,5-dimethoxy-4-phenylthiophenyl)-2-nitropropene as yellow crystals, with a mp of 100–102 °C (with prior sintering at about 98 °C). This was recrystallized from 50 mL boiling 95% EtOH. After cooling in an ice bath, it was filtered, washed with EtOH, and air drying provided gold-yellow crystals with a mp of 105–106 °C. The proton NMR was excellent (in CDCl3).

A suspension of 2.0 g LAH in 100 mL refluxing THF, under an inert atmosphere and with good stirring, was treated with a solution of 3.5 g 1-(2,5-dimethoxy-4-phenylthiophenyl)-2-nitropropene in 20 mL anhydrous THF added dropwise at a rate that maintained the reflux. Heating and stirring were maintained for an additional 36 h, and then the reaction mixture was stirred at room temperature for an additional 24 h. There was added 2.0 mL H2O (dissolved in a little THF), followed by 2.0 mL 15% NaOH, and finally another 6.0 mL H2O. Stirring was continued until all formed solids had turned white. The reaction mixture was filtered, and the filter cake washed with THF. The filtrate and the washings were combined and the solvent removed under vacuum. The residue was 2.8 g of an oil that quite obviously contained some H2O. This was dissolved in 400 mL CH2Cl2, washed first with dilute NaOH and then with 4×150 mL1 NHCl. The organic phase was stripped of solvent under vacuum, yielding a pale amber oil that crystallized. This was ground first under Et2O, giving 3.4 g of a yellow solid. This was then ground under 10 mL of acetone, yielding 2.4 g of a white crystalline solid that darkened at 170 °C, sintered at 187 °C and had a mp of 191–193 °C. This was dissolved in 20 mL hot 95% EtOH, and diluted with 40 mL Et2O to provide a clear solution which, after a minute’s scratching with a glass rod, deposited 2,5-dimethoxy-4-phenylthioamphetamine hydrochloride (ALEPH-6) as white solids. After filtration and air drying, the weight was 1.8 g, with a mp of 194–195 °C. The dilute HCl washes, after being made basic with aqueous NaOH and extraction with CH2Cl2 gave a trivial quantity of additional product.

DOSAGE: greater than 40 mg.

DURATION: probably long.

QUALITATIVE COMMENTS: (with 30 mg) “I had an alert at the one hour point, and in another hour there was a clear 1+. There was a not well defined, gentle un-worldliness. And it was still there quite unchanged twelve hours later. In a group I find that all voices about me are of equal intensity and equal importance. But this is not at all distracting. This will be a long lived thing for sure.”

(with 40 mg) “I am into a subtle but real effect, no more than one plus, but real. I feel primed, but nothing more. It is not interfering with work, maybe even helping with it. After another hour of static one-plusness I decided to use it as a primer to LSD, using the usual 60 microgram quantity that is standard for primer studies. The combination showed definite synergism, with a rapid show of the LSD effects (within fifteen minutes) and an almost three plus effect. This is most unusual for the usual 60 microgram challenge amount. An absolutely delightful intoxication that had sufficiently descended towards baseline that I accepted a ride to a party that evening in Marin County to attend a poetry reading. There I felt myself at baseline and accepted (unusual for me) a little marijuana. And with the utmost quiet and delicacy, a rather incredible change of state took place. The most memorable event was the awareness of a clarinet playing somewhere, and the sneaky sounds from it actually coming along the carpet out of the dining room and into the hallway and through the door and into the room where I was, and all of them gathering at my feet like docile kittens waiting for me to acknowledge them. I did, non-verbally, and I was amazed at the many additional follow-up sounds that came from the same clarinet along the same twisty path along the floor and through the door and into my space, over what seemed to be the next million hours. I ended up with a marvelous collection of notes and phrases at my feet, and I felt somehow honored. My speech sounded OK to me, but I knew that it would be odd to the ears of others, so I kept quiet. A final measure of the weirdness of the ALEPH-6/LSD/Pot combination was the viewing of the Larkspur ferry at its dock, abandoned for the evening and with no one aboard it, and with all that clean, dry sleeping space going to waste with so many people sleeping on the streets these days. Once home, I slept soundly and for a long while. Incredible experience.”

EXTENSIONS AND COMMENTARY: In a sense, this compound was a disappointment. The beauty of putting a whole new ring into an active structure is that it provides a marvelous vehicle for introducing new substituents in new arrangements. Had ALEPH-6 been a cleanly active and potent compound, then the new phenyl group could have been made electronegative to varying degrees (with methoxy substitution for example) or electropositive to varying degrees (with trifluoromethyls or nitros) and this fine-tuning could have been extremely rewarding.

But this material had the earmarks of one of those forever threshold things. The 40 milligram experiment was hopelessly compromised, and nothing higher was ever scheduled or tried. The two-carbon homologue, 2,5-dimethoxy-4-phenylthiophenethylamine, or 2C-T-6, has never even been synthesized, let alone assayed.

Page updated 30 March 2012 · This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License ·

About PiHKAL • info

This version of Book II of PiHKAL is based on the Erowid online version, originally transcribed by Simson Garfinkle and converted into HTML by Lamont Granquist. I drew also on “Tyrone Slothrop’s” (Unfinished) Review of PIHKAL to enumerate the many analogues mentioned in PiHKAL but not described at length. Still others remain to be added.

I have tried here to expunge any artifacts introduced by the earlier transcriptions and restore most of the typographic niceties found in the printed edition. I’ve also made minor changes to some chemical names in line with current nomenclature practice, and in the hope of aligning with more readers’ searches. Typically the change is little more than expanding a prefix and setting it in italics. The errata and changes page has further details.

Cautionary Note

“At the present time, restrictive laws are in force in the United States and it is very difficult for researchers to abide by the regulations which govern efforts to obtain legal approval to do work with these compounds in human beings.

“No one who is lacking legal authorization should attempt the synthesis of any of the compounds described in these files, with the intent to give them to man. To do so is to risk legal action which might lead to the tragic ruination of a life. It should also be noted that any person anywhere who experiments on himself, or on another human being, with any of the drugs described herein, without being familiar with that drug’s action and aware of the physical and/or mental disturbance or harm it might cause, is acting irresponsibly and immorally, whether or not he is doing so within the bounds of the law.”

Alexander T. Shulgin

Copyright Notice

The copyright for Book I of PiHKAL has been reserved in all forms and it may not be distributed. Book II of PiHKAL may be distributed for non-commercial reproduction provided that the introductory information, copyright notice, cautionary notice and ordering information remain attached.

Ordering Information

PiHKAL is the extraordinary record of the authors’ years exploring the chemistry and transformational power of phenethylamines. This book belongs in the library of anyone seeking a rational, enlightened and candid perspective on psychedelic drugs.

Although Sasha and Ann have put Book II of PiHKAL in the public domain, available to anyone, I strongly encourage you to buy a copy. We owe them—and there’s still nothing quite like holding a real book in your hands.

PiHKAL (ISBN 0-9630096-0-5) is available for US$24.50 (plus $10 domestic first-class shipping) from Transform Press.

Transform Press,
Box 13675
Berkeley, CA 94701

510 · 934 · 4930 (voice)
510 · 934 · 5999 (fax)