#134 MMDA-3a SYNTHESIS: To a solution of 100 g of 2,3-dihydroxyanisole in 1 L dry acetone there was added 110 g of powdered anhydrous K2CO3 followed by 210 g of methylene iodide. This was brought up to a reflux on the steam bath. There was a sudden appearance of a solid phase, and then a gentle reflux was maintained for three days, during which time much of the heavy solid that initially formed had redissolved. The reaction mixture was filtered to remove the insoluble salts, and these were washed with hot acetone. The combined mother liquor and washes were stripped of solvent under vacuum, leaving a solid residue. This was leached with several portions of boiling hexane. These were pooled, and removal of the solvent under vacuum provided 53.6 g of 2,3-methylenedioxyanisole as white crystals with a sharp spicy smell.
A mixture of 120 g N-methylformanilide and 137 g POCl3 was allowed to incubate at ambient temperature for 0.5 h, then there was added 53 g of crude 2,3-methylenedioxyanisole. The dark reaction mixture was heated on the steam bath for 2 h and then poured into a beaker filled with shaved ice. This was stirred until hydrolysis was complete, and the black, almost crystalline gunk that separated was removed by filtration. The 53.6 g of crude product was analyzed by GC using an ethylene glycol succinate column at 190 °C. Three peaks were apparent and had baseline separation. The major peak at 7.8 min constituted 82% of the product and was 2-methoxy-3,4-methylenedioxybenzaldehyde. A minor peak at 12.0 min represented 16% of the product and was the positional isomer 4-methoxy-2,3-methylenedioxybenzaldehyde. A trace component (2%) lay intermediate (at 9.5 min) and was myristicinaldehyde. The mps of the two major benzaldehydes were sufficiently different that they could serve as means of identification. The major product was obtained directly from the black gunk by repeated extraction with boiling cyclohexane which, upon removal of the solvent, gave 33.1 g of a yellow-colored product. This, upon one additional recrystallization from boiling cyclohexane, gave 24.4 g of 2-methoxy-3,4-methylenedioxybenzaldehyde as pale yellow crystals with a mp of 103–105 °C. The mother liquors were pooled and, after removal of all volatiles under vacuum, yielded an amber-colored solid that upon recrystallization provided a yellowish crystals. These, after yet another crystallization from cyclohexane, gave 4.1 g of 4-methoxy-2,3-methylenedioxybenzaldehyde with a mp of 85–86 °C. This latter isomer was used in the synthesis of .
To a solution of 3.5 g 2-methoxy-3,4-methylenedioxybenzaldehyde in 14 g acetic acid there was added 1.4 g anhydrous ammonium acetate and 2.3 mL of nitroethane. The mixture was brought to reflux and held there for 35 min. It was then quenched by the addition of 40 mL H2O, knocking out an orange, gummy solid. This was removed by filtration, and recrystallized from 50 mL boiling MeOH. After cooling for a few h in an ice bath, the bright yellow crystals were removed by filtration, washed with MeOH and air dried to constant weight, yielding 2.15 g 1-(2-methoxy-3,4-methylenedioxyphenyl)-2-nitropropene. The mp was 106–107 °C. Recrystallization from EtOH raised this mp to 109.5–110.5 °C.
A suspension of 2.2 g LAH in 300 mL anhydrous Et2O under an inert atmosphere was brought to a gentle reflux. The reflux condensate was passed through a modified Soxhlet thimble containing 1.95 g 1-(2-methoxy-3,4-methylenedioxyphenyl)-2-nitropropene effectively adding it, over the course of 0.5 h, to the reaction mixture as a saturated Et2O solution. The mixture was maintained at reflux for 16 h. After cooling to 0 °C with an ice bath, the excess hydride was destroyed by the addition of 1.5 N H2SO4. The phases were separated, and the aqueous phase washed with 2×100 mL Et2O. To the aqueous phase there was added 50 g potassium sodium tartrate followed by sufficient 25% NaOH to raise the pH >9. This was then extracted with 3×100 mL CH2Cl2, and the solvent from the pooled extracts removed under vavuum. The residual white oil was dissolved in 250 mL anhydrous Et2O, and saturated with anhydrous HCl gas. There was produced a crop of white microcrystals of 2-methoxy-3,4-methylenedioxyamphetamine hydrochloride (MMDA-3a) which was removed by filtration, washed with Et2O, and air dried to a constant weight of 1.2 g. The mp was 154–155 °C.
DOSAGE: 20–80 mg.
DURATION: 10–16 h.
QUALITATIVE COMMENTS: (with 20 mg) “I became aware at about an hour, and an hour later I found myself suddenly caught up in the marvelous world of insects. Right alongside a pile of bricks I saw a measuring worm, and with great tenderness and patience I picked him up, observed his fore and aft ‘feet’ and finally replaced him and watched him acclimate himself. There was also a spider on the bricks, and I was compelled to watch him in action. I was grateful that I was not being observed. Time was moving slowly, and I felt I should intentionally move slowly, so as not to exhaust myself.”
(with 40 mg) “This developed between one and two hours into it, and there were considerable body tremors. Talking directed the energy outwards, and I became aware of a visually sparkling world about me. I started dropping way too soon; it would have been interesting to have gone higher. By early evening I was left only with an awareness of some residual physical hypersensitivity, and there was light diarrhea. I am not at all sure just what to compare this drug to. It is gentle.”
(with 60 mg) “There were visuals of a soft sort—things moved with eyes open, and with eyes closed the music was great. There seemed to be some lasting stimulation, but it didn’t get in the way of sleeping. The next morning, however, I was still on. A good compound.”
EXTENSIONS AND COMMENTARY: The term MMDA-3a has the feel of being complicated, but there is a reason for the code. As had been mentioned, was the initials for methoxy (the M) methylenedioxy (the MD) amphetamine (the A). And with a molecule of amphetamine there are six ways of sticking these two groupings on the aromatic ring. The numbers 1–6 had already been assigned to the six ways of sticking three methoxyl groups onto an amphetamine molecule (with the trimethoxyamphetamines, the TMA’s) and I decided to hew to the same convention with the methylenedioxy counterparts. However, there are two #3’s (the methoxy and the methylenedioxy can go onto the three oxygen atoms in a row in two different ways, whereas the three methoxys can go on in just one way) and there can be no #6 (since a methylenedioxy must, perforce, have two oxygens that are adjacent, and there are none to be so found in the 2,4,6-orientation of ). So, with two possible MMDA-3’s it becomes reasonable, in fact essential, to name one of them “a” and the other “b” (). The “a” orientation occurs in nature as the essential oil , or 1-allyl-2-methoxy-3,4-methylenedioxybenzene. It thus can allow MMDA-3a to be classified as an Essential Amphetamine, since it can arise, in principle, by amination in the liver in vivo. But in the laboratory, is certainly not a practical starting material in this synthesis.
I have been told of a number of clinical trials that have explored MMDA-3a at considerably higher levels, but I have no explicit quotations to give, and the details are quite sketchy. Three trials at 80 milligrams, and one at 100 milligrams, all made comparisons, in both quantity and quality of the experience, to 100 micrograms of . However, two events occurred that may or may not be related to these trials; one subject had a spontaneous peak experience five days after the experiment, and another made a symbolic suicide attempt.
And, as with , both the 2-carbon “phenethylamine” analogue and the 4-carbon “ARIADNE” analogue of MMDA-3a have been made. The phenethylamine analog was prepared by the condensation of 7.6 g of the above benzaldehyde with nitromethane (in acetic acid with ammonium acetate catalyst, giving 5.4 g of the nitrostyrene with a mp of 115.5–116.5 °C from methanol) followed by lithium aluminum hydride reduction (in ether). The product, 2-methoxy-3,4-methylenedioxyphenethylamine hydrochloride () melted at 143–145 °C. A series of subjective evaluations were made, and there are reports of marginal effects in the 40 to 120 milligram range. At 40 milligrams, perhaps the hint of a psychic energizer; at 65 milligrams, there was a pleasant mood elevation; at 80 milligrams, there was a brief paresthetic twinge noted at about the hour and a half point, and at 120 milligrams, about the same at one hour, and then nothing. The fact that there can be such a modest change of effect over a three-fold range of dosage suggests that this compound might have some merit as an anti-depressant. It would be interesting to know if it blocks reuptake!
The 4-carbon analog was made similarly (from the aldehyde and nitropropane but using tert-butylammonium acetate as a reagent in 100% excess and isopropanol as solvent, giving bright yellow crystals melting at 105.5–106.5 °C from 25 volumes of boiling methanol) followed by reduction (with lithium aluminum hydride in ether) to give 1-(2-methoxy-3,4-methylenedioxyphenyl)-2-aminobutane hydrochloride () with a mp of 183–185 °C with prior sintering at 173 °C. This material has been tasted at up to 3.5 milligrams with nothing noted. There have been no trials at any higher dose.
13 May 2016 · Creative Commons BY-NC-SA ·

About PiHKAL · info

This version of Book II of PiHKAL is based on the Erowid online version, originally transcribed by Simson Garfinkle and converted into HTML by Lamont Granquist. I drew also on “Tyrone Slothrop’s” (Unfinished) Review of PIHKAL to enumerate the many analogues mentioned in PiHKAL but not described at length. Many, many others have since been added.
I have tried here to expunge any artifacts introduced by the earlier transcriptions and restore the typographic niceties found in the printed edition. I’ve also made minor changes to some chemical names in line with current nomenclature practice. Typically the change is little more than expanding a prefix or setting it in italics. The history page has further details.

Cautionary note

“At the present time, restrictive laws are in force in the United States and it is very difficult for researchers to abide by the regulations which govern efforts to obtain legal approval to do work with these compounds in human beings.
“No one who is lacking legal authorization should attempt the synthesis of any of the compounds described in these files, with the intent to give them to man. To do so is to risk legal action which might lead to the tragic ruination of a life. It should also be noted that any person anywhere who experiments on himself, or on another human being, with any of the drugs described herein, without being familiar with that drug’s action and aware of the physical and/or mental disturbance or harm it might cause, is acting irresponsibly and immorally, whether or not he is doing so within the bounds of the law.”
Alexander T. Shulgin

Copyright notice

The copyright for Book I of PiHKAL has been reserved in all forms and it may not be distributed. Book II of PiHKAL may be distributed for non-commercial reproduction provided that the introductory information, copyright notice, cautionary notice and ordering information remain attached.

Ordering information

PiHKAL is the extraordinary record of the authors’ years exploring the chemistry and transformational power of phenethylamines. This book belongs in the library of anyone seeking a rational, enlightened and candid perspective on psychedelic drugs.
Though Sasha and Ann have put Book II of PiHKAL in the public domain, available to anyone, I strongly encourage you to buy a copy. We owe them — and there’s still nothing quite like holding a real book in your hands.
PiHKAL (ISBN 0-9630096-0-5) is available for US$24.50 (plus $10 domestic first-class shipping) from Transform Press.
Transform Press,
Box 13675
Berkeley, CA 94701

510 · 934 · 4930 (voice)
510 · 934 · 5999 (fax)