Exploring 5-MeO-DMT. To explore a different substance…

Names:
5-MeO-DMT
N,N,O-TMS
OMB
Bufotenine methyl ether
Tryptamine, 5-methoxy-N,N-dimethyl
N,N,O-Trimethylserotonin
Indole, 5-methoxy-3-[2-(dimethylamino)ethyl]
5-Methoxy-N,N-dimethyltryptamine
O-Methylbufotenine
5-Methoxy-3-[2-(dimethylamino)ethyl]indole
IUPAC name:
2-(5-Methoxy-1H-indol-3-yl)-N,N-dimethylethan-1-amine
5038 · C13H18N2O · 218.295
InChI=1S/C13H18N2O/c1-15(2)7-6-10-9-14-13-5-4-11(16-3)8-12(10)13/h4-5,8-9,14H,6-7H2,1-3H3
ZSTKHSQDNIGFLM-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #5-MeO-DMT

Callaway, J; Grob, CS; McKenna, DJ; Nichols, DE; Shulgin, AT; Tupper, KW; Sklerov, JH; Levine, B; Moore, KA. A demand for clarity regarding a case report on the ingestion of 5-methoxy-N, N-Dimethyltryptamine (5-MeO-DMT) in an Ayahuasca preparation. J. Anal. Toxicol., 1 Jul 2006, 30 (6), 406–407. 53 kB. https://doi.org/10.1093/jat/30.6.406

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Brandt, SD; Tearavarich, R; Dempster, N; Cozzi, NV; Daley, PF. Synthesis and characterization of 5-methoxy-2-methyl-N,N-dialkylated tryptamines. Drug Test. Analysis, 1 Jan 2012, 4 (1), 24–32. 506 kB. https://doi.org/10.1002/dta.398

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017

Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. https://doi.org/10.1016/j.talanta.2007.06.012

Gessner, PK; Godse, DD; Krull, AH; McMullan, JM. Structure-activity relationships among 5-methoxy-N:N-dimethyltryptamine, 4-hydroxy-N:N-dimethyltryptamine (psilocin) and other substituted tryptamines. Life Sci., 1 Mar 1968, 7 (5), 267–277. 362 kB. https://doi.org/10.1016/0024-3205(68)90200-2

Lyon, RA; Titeler, M; Seggel, MR; Glennon, RA. Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens. Eur. J. Pharmacol., 19 Jan 1988, 145 (3), 291–297. 533 kB. https://doi.org/10.1016/0014-2999(88)90432-3

Glennon, RA; Young, R; Jacyno, JM. Indolealkylamine and phenalkylamine hallucinogens: Effect of α-methyl and N-methyl substituents on behavioral activity. Biochem. Pharmacol., 1 Apr 1983, 32 (7), 1267–1273. 591 kB. https://doi.org/10.1016/0006-2952(83)90281-2

Brandt, SD; Tirunarayanapuram, SS; Freeman, S; Dempster, N; Barker, SA; Daley, PF; Cozzi, NV; Martins, CPB. Microwave-accelerated synthesis of psychoactive deuterated N,N-dialkylated-[α,α,β,β-d4]-tryptamines. J. Labelled Compd. Radiopharm., 1 Nov 2008, 51 (14), 423–429. 169 kB. https://doi.org/10.1002/jlcr.1557

Peroutka, SJ; McCarthy, BG; Guan, X. 5-Benzyloxytryptamine: a relatively selective 5-hydroxytryptamine1D/1B agent. Life Sci., 1 Jan 1991, 49 (6), 409–418. 556 kB. https://doi.org/10.1016/0024-3205(91)90582-V

Winter, J; Filipink, R; Timineri, D; Helsley, S; Rabin, R. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol. Biochem. Behav., 1 Jan 2000, 65 (1), 75–82. 157 kB. https://doi.org/10.1016/S0091-3057(99)00178-1

Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. https://doi.org/10.1016/S0376-8716(99)00148-9

Macor, JE; Fox, CB; Johnson, C; Koe, BK; Lebel, LA; Zorn, SH. 1-(2-Aminoethyl)-3-methyl-8,9-dihydropyrano[3,2-e]indole: A rotationally restricted phenolic analog of the neurotransmitter serotonin and agonist selective for serotonin (5-HT2-type) receptors. J. Med. Chem., 1 Jan 1992, 35 (20), 3625–3632. 1.9 MB. https://doi.org/10.1021/jm00098a005

Glennon, RA; Titeler, M; Lyon, RA; Slusher, R. N,N-Di-n-propylserotonin: Binding at serotonin binding sites and a comparison with 8-hydroxy-2-(di-n-propylamino)tetralin. J. Med. Chem., 1 Jan 1988, 31 (4), 867–870. 600 kB. https://doi.org/10.1021/jm00399a031

Brandt, SD; Freeman, S; Fleet, IA; Alder, JF. Analytical chemistry of synthetic routes to psychoactive tryptamines. Part III. Characterisation of the Speeter and Anthony route to N,N-dialkylated tryptamines using CI-IT-MS-MS. Analyst, 1 Jan 2005, 130 (9), 1258–1262. 250 kB. https://doi.org/10.1039/b504001a

Ciprian-Ollivier, J; Cetkovich-Bakmas, MG. Altered consciousness states and endogenous psychoses: a common molecular pathway? Schizophr. Res., 19 Dec 1997, 28 (2–3), 257–265. 722 kB. https://doi.org/10.1016/S0920-9964(97)00116-3

Kline, TB; Benington, F; Morin, RD; Beaton, JM; Glennon, RA; Domelsmith, LN; Houk, KN; Rozeboom, MD. Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives. J. Med. Chem., 1 Jan 1982, 25 (11), 1381–1383. 378 kB. https://doi.org/10.1021/jm00353a021

Glennon, RA; Gessner, PK. Serotonin receptor binding affinities of tryptamine analogues. J. Med. Chem., 1 Jan 1979, 22 (4), pp 428–432. 731 kB. https://doi.org/10.1021/jm00190a014

Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255

McKenna, DJ. Monoamine oxidsase inhibitors in Amazonian hallucinogenic plants: Ethnobotanical, phytochemical, and pharmacological investigations. Ph. D. Thesis, University of British Columbia, BC, Canada, 26 Apr 1984. 12.2 MB.

Barker, SA; McIlhenny, EH; Strassman, R. A critical review of reports of endogenous psychedelic N,N-dimethyltryptamines in humans: 1955–2010. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 617-635. 270 kB. https://doi.org/10.1002/dta.422

Brandt, SD; Freeman, S; Fleet, IA; McGagh, P; Alder, JF. Analytical chemistry of synthetic routes to psychoactive tryptamines. Part II. Characterisation of the Speeter and Anthony synthetic route to N,N-dialkylated tryptamines using GC-EI-ITMS, ESI-TQ-MS-MS and NMR. Analyst, 2005, 130 (3), 330–344. 403 kB. https://doi.org/10.1039/b413014f

Glennon, RA; Hong, S; Bondarev, M; Law, H; Dukat, M; Rakhit, S; Power, P; Fan, E; Kinneau, D; Kamboj, R; Teitler, M; Herrick-Davis, K; Smith, C. Binding of O-alkyl derivatives of serotonin at human 5-HT1Dβ receptors. J. Med. Chem., 5 Jan 1996, 39 (1), 314–322. 193 kB. https://doi.org/10.1021/jm950498t

Kline, TB; Benington, F; Morin, RD; Beaton, JM. Structure-activity relationships in potentially hallucinogenic N,N-dialkyltryptamines substituted in the benzene moiety. J. Med. Chem., 1 Jan 1982, 25 (8), 908–913. 845 kB. https://doi.org/10.1021/jm00350a005

Halberstadt, AL; Nichols, DE; Geyer, MA. Behavioral effects of α,α,β,β-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor. Psychopharmacology, 1 Jun 2012, 221 (4), 709–218. 296 kB. https://doi.org/10.1007/s00213-011-2616-6

McKenna, DJ; Repke, DB; Lo, L; Peroutka, SJ. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 1 Mar 1990, 29 (3), 191–198. 679 kB. https://doi.org/10.1016/0028-3908(90)90001-8

Jensen, N. Tryptamines as ligands and modulators of the serotonin 5-HT2A receptor and the isolation of aeruginascin from the hallucinogenic mushroom Inocybe aeruginascens. Ph. D. Thesis, Georg-August-Universität zu Göttingen, Göttingen, Germany, 4 Nov 2004. 2.3 MB. Referent: Prof. Dr. H. Laatsch; Korreferent: Prof. D. E. Nichols.

McIlhenny, EH; Pipkin, KE; Standish, LJ; Wechkin, HA; Strassman, R; Barker, SA. Direct analysis of psychoactive tryptamine and harmala alkaloids in the Amazonian botanical medicine ayahuasca by liquid chromatography–electrospray ionization-tandem mass spectrometry. J. Chromatogr. A, 18 Dec 2009, 1216 (51), 8960–8968. 450 kB. https://doi.org/10.1016/j.chroma.2009.10.088

Glennon, RA; Lee, M; Rangisetty, JB; Dukat, M; Roth, BL; Savage, JE; McBridge, A; Rauser, L; Hufeisen, SJ; Lee, DKH. 2-Substituted tryptamines: Agents with selectivity for 5-HT6 serotonin receptors. J. Med. Chem., 9 Mar 2000, 43 (5), 1011–1018. 137 kB. https://doi.org/10.1021/jm990550b

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci., 2008, 54 (1), 89–96. 1.9 MB. https://doi.org/10.1248/jhs.54.89

Shen, H; Jiang, X; Winter, JC; Yu, A. Psychedelic 5-methoxy-N,N-dimethyltryptamine: Metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr. Drug Metab., 1 Oct 2010, 11 (8), 659–666. 319 kB. https://doi.org/10.2174/138920010794233495

McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed. Chromatogr., 1 Sep 2011, 25 (9), 970–984. 1.0 MB. https://doi.org/10.1002/bmc.1551

McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed. Chromatogr., 1 Mar 2012, 26 (3), 301–313. 557 kB. https://doi.org/10.1002/bmc.1657

Barker, SA; Borjigin, J; Lomnicka, I; Strassman, R. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomed. Chromatogr., 1 Dec 2013, 27 (12), 1690-1700. 929 kB. https://doi.org/10.1002/bmc.2981

Spratley, TK; Hays, PA; Geer, LC; Cooper, SD; McKibben, TD. Analytical profiles for five “designer” tryptamines. Microgram J., 1 Jan 2005, 3 (1–2), 54–68. 473 kB.

Benington, F; Morin, RD; Clark, LC. Synthesis of O- and N-methylated derivatives of 5-hydroxytryptamine. J. Org. Chem., 1 Dec 1958, 23 (12), 1977–1979. 401 kB. https://doi.org/10.1021/jo01106a046

Blough, BE; Landavazo, A; Decker, AM; Partilla, JS; Baumann, MH; Rothman, RB. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 1 Oct 2014, 231 (21), 4135-4144. 298 kB. https://doi.org/10.1007/s00213-014-3557-7

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0

Schmid, CL; Bohn, LM. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a β-arrestin2/Src/Akt signaling complex in vivo. J. Neurosci., 6 Oct 2010, 30 (40), 13513–13524. 1.5 MB. https://doi.org/10.1523/JNEUROSCI.1665-10.2010

Glennon, RA; Titeler, M; McKenney, JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 17 Dec 1984, 35 (25), 2505–2511. 332 kB. https://doi.org/10.1016/0024-3205(84)90436-3

Brandt, SD; Martins, CP. Analytical methods for psychoactive N,N-dialkylated tryptamines. Trends Anal. Chem., 1 Sep 2010, 29 (8), 858–869. 446 kB. https://doi.org/10.1016/j.trac.2010.04.008 #25

Morris, H. Bufo: The psychedelic toad. Hamilton’s Pharmacopeia, 28 Nov 2017. S2 E01, 39:55. Vice 115.1 MB.

Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Analysis, 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315

Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9

Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #2

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Lladó-Pelfort, L; Celada, P; Riga, M; Troyano-Rodríguez,, E. Effect of hallucinogens on neuronal activity. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 75-105. 902 kB. https://doi.org/10.1007/7854_2017_473

McKenna, D; Riba, J. New world tryptamine hallucinogens and the neuroscience of ayahuasca. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2016; pp 283-311. 749 kB. https://doi.org/10.1007/7854_2016_472

Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42

May, JA; Chen, H; Rusinko, A; Lynch, VM; Sharif, NA; McLaughlin, MA. A novel and selective 5-HT2 receptor agonist with ocular hypotensive activity: (S)-(+)-1-(2-Aminopropyl)-8,9-dihydropyrano[3,2-e]indole. J. Med. Chem., 2003, 46 (19), 4188–2195. 126 kB. https://doi.org/10.1021/jm030205t #1a

May, JA; Dantanarayana, AP; Zinke, PW; McLaughlin, MA; Sharif, NA. 1-((S)-2-Aminopropyl)-1H-indazol-6-ol: A potent peripherally acting 5-HT2 receptor agonist with ocular hypotensive activity. J. Med. Chem., 12 Jan 2006, 49 (1), 318–328. 124 kB. https://doi.org/10.1021/jm050663x #18

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1994; pp 74–91. 51 kB.

Glennon, RA; Jacyno, JM; Young, R; McKenney, JD; Nelson, D. Synthesis and evaluation of a novel series of N,N-dimethylisotryptamines. J. Med. Chem., 1 Jan 1984, 27 (1), 41–45. 718 kB. https://doi.org/10.1021/jm00367a008 #10

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB. #4l

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #5

Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1976; Vol. 4, pp 59–146. 3.1 MB. #XIX

Taschwer, M; Ebner, E; Schmid, MG. Test purchase of new synthetic tryptamines via the Internet: Identity check by GC-MS and separation by HPLC. J. Appl. Pharm. Sci., 1 Jan 2016, 6 (1), 028–034. 504 kB. https://doi.org/10.7324/JAPS.2016.600105

Dean, JG. Indolethylamine-N-methyltransferase polymorphisms: Genetic and biochemical approaches for study of endogenous N,N-dimethyltryptamine. Front. Neurosci., 23 Apr 2018, 12 n/a. 2.1 MB. https://doi.org/10.3389/fnins.2018.00232 #5-MeO-DMT

Phipps, S; Grundmann, O. Pharmacology and structure-activity relationship of natural products with psychoactive effects from Salvia divinorum, Mitragyna speciosa, and Ayahuasca. In Stud. Nat. Prod. Chem.; , Elsevier, 1 Jan 2017; pp 1–44. 1.4 MB. https://doi.org/10.1016/B978-0-444-63930-1.00001-6 #5-Methoxy-DMT

Nagai, F; Nonaka, R; Kamimura, KSH. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur. J. Pharmacol., 22 Mar 2007, 559 (2), 132–137. 399 kB. https://doi.org/10.1016/j.ejphar.2006.11.075 #5-MeO-DMT

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #5-MeO-DMT

Tsujikawa, K; Mohri, H; Kuwayama, K; Miyaguchi, H; Iwata, YT; Gohda, A; Fukushima, S; Inoue, H; Kishi, T. Analysis of hallucinogenic constituents in Amanita mushrooms circulated in Japan. Forensic Sci. Int., 1 Jan 2006, 164 (2–3), 172–178. 634 kB. https://doi.org/10.1016/j.forsciint.2006.01.004 #5-MeO-DMT

Seto, T; Takahashi, M; Nagashima, M; Suzuki, J; Yasuda, I. The identifications and the aspects of the commercially available uncontrolled drugs purchased between Apr. 2003 and Mar. 2004. Ann. Rep. Tokyo Metr. Inst. P. H., 1 Jan 2005, 56 75–80. 1.2 MB. #5-MeO-DMT MS,NMR,UV

Chapman, SJ. PeakAL: Protons I Have Known and Loved, Too — Another Fifty Shades of Grey-Market Spectra. Supplementary Data. BLOTTER, 1 Mar 2018, 3 (1). 5.7 MB. https://doi.org/10.16889/isomerdesign-5-supp Open access DOI

Chapman, SJ. PeakAL: Protons I Have Known and Loved, Too — Another Fifty Shades of Grey-Market Spectra. BLOTTER, 1 Mar 2018, 3 (1). 1.2 MB. https://doi.org/10.16889/isomerdesign-5 Open access DOI

4-HO-MET
α,N,O-TMS
1-MeO-DMT · Lespedamine
CMY · 1-Methylpsilocin
5-MeO-α-ET
4-MeO-DMT
6-MeO-DMT
7-MeO-DMT
5-HTQ · Bufotenidine
5-MeO-NET
2-Methylpsilocin
α-Methylpsilocin
4-HO-DMHT
1-Methylbufotenine
5-EtO-NMT
5-IPrO-T
5-PrO-T
10611
4-Hydroxymethyl-DMT
5-HO-NIPT
5-MeO-isoDMT
6-MeO-isoDMT
26 September 2018 · Creative Commons BY-NC-SA ·