- Bufotenin
- 5-Hydroxy-N,N-dimethyltryptamine
- Bufotenine
- 3-(2-Dimethylaminoethyl)indol-5-ol
- N,N-Dimethyl-5-hydroxytryptamine
- N,N-Dimethylserotonin
- 5-HO-DMT
- Indol-5-ol, 3-[2-(dimethylamino)ethyl]
- Mappine
- Tryptamine, N,N-dimethyl-5-hydroxy
Ott, J. Pharmanopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine. J. Psychoactive Drugs, 1 Sep 2001, 33 (3), 273–281. 1.2 MB. https://doi.org/10.1080/02791072.2001.10400574
Urban, JD; Clarke, WP; von Zastrow, M; Nichols, DE; Kobilka, B; Weinstein, H; Javitch, JA; Roth, BL; Christopoulos, A; Sexton, PM; Miller,, KJ. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther., 1 Jan 2007, 320 (1), 1–13. 567 kB. https://doi.org/10.1124/jpet.106.104463
Lyon, RA; Titeler, M; Seggel, MR; Glennon, RA. Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens. Eur. J. Pharmacol., 19 Jan 1988, 145 (3), 291–297. 533 kB. https://doi.org/10.1016/0014-2999(88)90432-3
Wurst, M; Kysilka, R; Flieger, M. Psychoactive tryptamines from Basidiomycetes. Folia Microbiol., 1 Feb 2002, 47 (1), 3–27. 3.1 MB. https://doi.org/10.1007/BF02818560 #BUF
Peroutka, SJ; McCarthy, BG; Guan, X. 5-Benzyloxytryptamine: a relatively selective 5-hydroxytryptamine1D/1B agent. Life Sci., 1 Jan 1991, 49 (6), 409–418. 556 kB. https://doi.org/10.1016/0024-3205(91)90582-V
Ciprian-Ollivier, J; Cetkovich-Bakmas, MG. Altered consciousness states and endogenous psychoses: a common molecular pathway? Schizophr. Res., 19 Dec 1997, 28 (2–3), 257–265. 722 kB. https://doi.org/10.1016/S0920-9964(97)00116-3
Glennon, RA; Gessner, PK. Serotonin receptor binding affinities of tryptamine analogues. J. Med. Chem., 1 Jan 1979, 22 (4), pp 428–432. 731 kB. https://doi.org/10.1021/jm00190a014 #2
Shulgin, AT. Profiles of psychedelic drugs. 11. Bufotenine. J. Psychoactive Drugs, 1 Oct 1981, 13 (4), 389-389. 500 kB. https://doi.org/10.1080/02791072.1981.10471899
McBride, MC. Bufotenine: Toward an understanding of possible psychoactive mechanisms. J. Psychoactive Drugs, 1 Jan 2000, 32 (3), 321–331. 1.6 MB. https://doi.org/10.1080/02791072.2000.10400456
Barker, SA; McIlhenny, EH; Strassman, R. A critical review of reports of endogenous psychedelic N,N-dimethyltryptamines in humans: 1955–2010. Drug Test. Anal., 1 Jul 2012, 4 (7-8), 617-635. 270 kB. https://doi.org/10.1002/dta.422
Lyttle, T; Goldstein, D; Gartz, J. Bufo toads and bufotenine: Fact and fiction surrounding an alleged psychedelic. J. Psychoactive Drugs, 1 Sep 1996, 28 (3), 267–290. 24.6 MB. https://doi.org/10.1080/02791072.1996.10472488
Chilton, WS; Bigwood, J; Jensen, RE. Psilocin, Bufotenine and serotonin: Historical and biosynthetic observations. J. Psychoactive Drugs, 1 Jan 1979, 11 (1–2), 61–69. 4.8 MB. https://doi.org/10.1080/02791072.1979.10472093
McKenna, DJ; Repke, DB; Lo, L; Peroutka, SJ. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 1 Mar 1990, 29 (3), 191–198. 679 kB. https://doi.org/10.1016/0028-3908(90)90001-8
Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B #S20
McIlhenny, EH; Pipkin, KE; Standish, LJ; Wechkin, HA; Strassman, R; Barker, SA. Direct analysis of psychoactive tryptamine and harmala alkaloids in the Amazonian botanical medicine ayahuasca by liquid chromatography–electrospray ionization-tandem mass spectrometry. J. Chromatogr. A, 18 Dec 2009, 1216 (51), 8960–8968. 450 kB. https://doi.org/10.1016/j.chroma.2009.10.088
McLeod, WR; Sitaram, BR. Bufotenine reconsidered. Acta Psychiatr. Scand., 1 Nov 1985, 72 (5), 447–450. 263 kB. https://doi.org/10.1111/j.1600-0447.1985.tb02638.x
Migliaccio, GP; Shieh, TN; Byrn, SR; Hathaway, BA; Nichols, DE. Comparison of solution conformational preferences for the hallucinogens bufotenin and psilocin using 360-MHz proton NMR spectroscopy. J. Med. Chem., 1 Feb 1981, 24 (2), 206–209. 564 kB. https://doi.org/10.1021/jm00134a016 NMR
McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed. Chromatogr., 1 Sep 2011, 25 (9), 970–984. 1.0 MB. https://doi.org/10.1002/bmc.1551
McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed. Chromatogr., 1 Mar 2012, 26 (3), 301–313. 557 kB. https://doi.org/10.1002/bmc.1657
Barker, SA; Borjigin, J; Lomnicka, I; Strassman, R. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomed. Chromatogr., 1 Dec 2013, 27 (12), 1690-1700. 929 kB. https://doi.org/10.1002/bmc.2981
Blackledge, RD; Phelan, CP. Identification of bufotenine in Yopo seeds via GC/IRD. Microgram J., 1 Jan 2006, 4 (1–4), 3–11. 334 kB. GC,MS,IR
Blough, BE; Landavazo, A; Decker, AM; Partilla, JS; Baumann, MH; Rothman, RB. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 1 Oct 2014, 231 (21), 4135-4144. 298 kB. https://doi.org/10.1007/s00213-014-3557-7
Meyer, MR; Caspar, A; Brandt, SD; Maurer, HH. A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches. Anal. Bioanal. Chem., 1 Jan 2014, 406 (1), 225–237. 457 kB. https://doi.org/10.1007/s00216-013-7425-9 #5-HO-DMT LC,MS
Brandt, SD; Martins, CPB. Analytical methods for psychoactive N,N-dialkylated tryptamines. Trends Anal. Chem., 1 Sep 2010, 29 (8), 858–869. 446 kB. https://doi.org/10.1016/j.trac.2010.04.008 #23
Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476
Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9 TLC
Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Anal., 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315
McKenna, D; Riba, J. New world tryptamine hallucinogens and the neuroscience of ayahuasca. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2016; pp 283-311. 749 kB. https://doi.org/10.1007/7854_2016_472
Martin, R. Nachweis und Bestimmung halluzinogener Wirkstoffe und ihrer Metaboliten in Körperflüssigkeiten und Haaren. Toxichem Krimtech, 1 Jan 2015, 82 (2), 123–127. 448 kB.
May, JA; Chen, H; Rusinko, A; Lynch, VM; Sharif, NA; McLaughlin, MA. A novel and selective 5-HT2 receptor agonist with ocular hypotensive activity: (S)-(+)-1-(2-Aminopropyl)-8,9-dihydropyrano[3,2-e]indole. J. Med. Chem., 1 Sep 2003, 46 (19), 4188–2195. 126 kB. https://doi.org/10.1021/jm030205t #1b MS,NMR
Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1994; pp 74–91. 51 kB.
Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 24 Apr 2003; pp 67–137. 6.3 MB.
Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., John Wiley & Sons, Inc., 1 Jan 1981; pp 1109–1137. 4.7 MB. #12
Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1 Jan 1976; Vol. 4, pp 59–146. 3.1 MB. #XVIII
Dean, JG. Indolethylamine-N-methyltransferase polymorphisms: Genetic and biochemical approaches for study of endogenous N,N-dimethyltryptamine. Front. Neurosci., 23 Apr 2018, 12 (232). 2.1 MB. https://doi.org/10.3389/fnins.2018.00232 #5-HO-DMT
Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #Bufotenin
EMCDDA. New drugs in Europe, 2007, European Monitoring Centre for Drugs and Drug Addiction, Lisbon, 1 May 2008. 381 kB. #14
Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, . 3.9 MB. #Bufotenine
Barry, TL; Petzinger, G; Zito, SW. GC/MS comparison of the West Indian aphrodisiac “Love Stone” to the Chinese medication “Chan Su”: Bufotenine and related bufadienolides. J. Forensic Sci., 1 Nov 1996, 41 (6), 1068–1073. 411 kB. https://doi.org/10.1520/JFS14052J #Bufotenine MS
Passie, T; Brandt, SD. Self-experiments with psychoactive substances: A historical perspective. In New Psychoactive Substances: Pharmacology, Clinical, Forensic and Analytical Toxicology; Maurer, HH; Brandt, SD, Eds., Springer, Berlin, Heidelberg, 1 Jan 2018; pp 69-110. 563 kB. https://doi.org/10.1007/164_2018_177 #Bufotenine
Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. #11 In German. MS,NMR,IR
Uthaug, MV; Lancelotta, R; van Oorsouw, K; Kuypers, KPC; Mason, N; Rak, J; Šuláková, A; Jurok, R; Maryška, M; Kuchař, M; Páleníček, T; Riba, J; Ramaekers, JG. A single inhalation of vapor from dried toad secretion containing 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in a naturalistic setting is related to sustained enhancement of satisfaction with life, mindfulness-related capacities, and a decrement of psychopathological symptoms. Psychopharmacology, 13 Apr 2019, 236 (9), 2653-2666. 1.0 MB. https://doi.org/10.1007/s00213-019-05236-w #Bufotenin
Yasuoka, T; Muroi, H; Okazaki, R; Matsumoto, Y; Terauchi, Y; Sasatani, T. Analysis of tryptamine group compounds. JCCL, 1 Jan 2003, (43), 63–69. 151 kB. #Bufotenine Japanese, English abstract LC,MS,NMR,IR,UV
Kang, S; Johnson, CL; Green, JP. Theoretical studies on the conformations of psilocin and mescaline. Mol. Pharmacol., 1 Sep 1973, 9 (5), 640–648. 6.9 MB. #5-Hydroxy-N,N-dimethyltryptamine other
Cumming, P; Scheidegger, M; Dornbierer, D; Palner, M; Quednow, BB; Martin-Soelch, C. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules, 1 Jan 2021, 26 (9), 2451. 3.5 MB. https://doi.org/10.3390/molecules26092451 #10
Mesley, RJ; Evans, WH. Infrared identification of some hallucinogenic derivatives of tryptamine and amphetamine. J. Pharm. Pharmacol., 1 May 1970, 22 (5), 321–332. 775 kB. https://doi.org/10.1111/j.2042-7158.1970.tb08533.x #5-Hydroxy-N,N-dimethyltryptamine IR
Lenz, C; Dörner, S; Sherwood, A; Hoffmeister, D. Structure elucidation and spectroscopic analysis of chromophores produced by oxidative psilocin dimerization. Chem. Eur. J., 19 Aug 2021, 27 (47), 12166–12171. 10.7 MB. https://doi.org/10.1002/chem.202101382 #3 LC,MS,NMR,UV
Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB. #4.22
Lenz, C; Dörner, S; Trottmann, F; Hertweck, C; Sherwood, A; Hoffmeister, D. Assessment of bioactivity‐modulating pseudo‐ring formation in psilocin and related tryptamines. ChemBioChem, 28 Apr 2022, 23 (13), e202200183. 3.2 MB. https://doi.org/10.1002/cbic.202200183 #7 NMR
Shulgin, AT. Psychotomimetic agents related to the catecholamines. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 14–19. 782 kB. https://doi.org/10.1080/02791072.1969.10524409 #VIIe
Speeter, ME; Anthony, WC. The action of oxalyl chloride on indoles: A new approach to tryptamines. J. Am. Chem. Soc., 1 Dec 1954, 76 (23), 6208–6210. 416 kB. https://doi.org/10.1021/ja01652a113 #II
Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8.6 MB. #Bufotenine
Vogel, WH; Evans, BD. Structure-activity-relationships of certain hallucinogenic substances based on brain levels. Life Sci., 15 May 1977, 20 (10), 1629–1635. 419 kB. https://doi.org/10.1016/0024-3205(77)90335-6 #5-Hydroxy-DMT
Glennon, RA; Rosecrans, JA. Indolealkylamine and phenalkylamine hallucinogens: A brief overview. Neurosci. Biobehav. Rev., 1 Jan 1982, 6 (4), 489–497. 895 kB. https://doi.org/10.1016/0149-7634(82)90030-6 #3d
Gupta, SP; Singh, P; Bindal, MC. QSAR studies on hallucinogens. Chem. Rev., 1 Dec 1983, 83 (6), 633–649. 2.8 MB. https://doi.org/10.1021/cr00058a003 #87
McKenna, DJ; Towers, HHN. Biochemistry and pharmacology of tryptamines and beta-carbolines: A minireview. J. Psychoactive Drugs, 1 Jan 1984, 16 (4), 347–358. 10.8 MB. https://doi.org/10.1080/02791072.1984.10472305 #Bufotenine