Exploring DMT. To explore a different substance…

Names:
DMT
Nigerine
Desoxybufotenine
Indole, 3-[2-(dimethylamino)ethyl]
Tryptamine, N,N-dimethyl
3-[2-(Dimethylamino)ethyl]indole
N,N-Dimethyltryptamine
IUPAC name:
2-(1H-Indol-3-yl)-N,N-dimethylethan-1-amine
5006 · C12H16N2 · 188.269
InChI=1S/C12H16N2/c1-14(2)8-7-10-9-13-12-6-4-3-5-11(10)12/h3-6,9,13H,7-8H2,1-2H3
DMULVCHRPCFFGV-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Szara, S. Dimethyltryptamin: Its metabolism in man; the relation to its psychotic effect to the serotonin metabolism. Experientia, 1 Jan 1956, 12 (11), 441–442. 333 kB. https://doi.org/10.1007/BF02157378

Szara, S; Hearst, E; Putney, F. Metabolism and behavioural action of psychotropic tryptamine homologues. Int. J. Neuropharmacol., 1 Nov 1962, 1 (1–3), 111–117. 1.1 MB. https://doi.org/10.1016/0028-3908(62)90015-1

Shulgin, AT. DMT and tryptophan. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 19 Sep 2002.

Cozzi, NV; Gopalakrishnan, A; Anderson, LL; Feih, JT; Shulgin, AT; Daley, PF; Ruoho, AE. Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J. Neural Transm., 1 Dec 2009, 116 (12), 1591–1599. 420 kB. https://doi.org/10.1007/s00702-009-0308-8

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB.

Cozzi, NV; Shulgin, AT; Daley, PF; Gopalakrishnan, A; Anderson, LL; Feih, JT; Ruoho, AE. Psychoactive N,N-dialkyltryptamines modulate serotonin transport by at least two mechanisms. Soc. Neurosci. Abs., 1 Jan 2008, 536.17. 52 kB.

Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. https://doi.org/10.1016/j.bmc.2008.02.033

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Brandt, SD; Tearavarich, R; Dempster, N; Cozzi, NV; Daley, PF. Synthesis and characterization of 5-methoxy-2-methyl-N,N-dialkylated tryptamines. Drug Test. Analysis, 1 Jan 2012, 4 (1), 24–32. 506 kB. https://doi.org/10.1002/dta.398

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017

Meyers-Riggs, B. Grid biosynthesis of psilocybin. countyourculture, countyourculture: rational exploration of the underground, 5 Dec 2011.

Meyers-Riggs, B. N-Alkylated tryptamines. countyourculture, countyourculture: rational exploration of the underground, 10 Mar 2012.

Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. https://doi.org/10.1016/j.talanta.2007.06.012

Lyon, RA; Titeler, M; Seggel, MR; Glennon, RA. Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens. Eur. J. Pharmacol., 19 Jan 1988, 145 (3), 291–297. 533 kB. https://doi.org/10.1016/0014-2999(88)90432-3

Glennon, RA; Young, R; Jacyno, JM. Indolealkylamine and phenalkylamine hallucinogens: Effect of α-methyl and N-methyl substituents on behavioral activity. Biochem. Pharmacol., 1 Apr 1983, 32 (7), 1267–1273. 591 kB. https://doi.org/10.1016/0006-2952(83)90281-2

Wurst, M; Kysilka, R; Flieger, M. Psychoactive tryptamines from Basidiomycetes. Folia Microbiol., 1 Feb 2002, 47 (1), 3–27. 3.1 MB. https://doi.org/10.1007/BF02818560

Brandt, SD; Tirunarayanapuram, SS; Freeman, S; Dempster, N; Barker, SA; Daley, PF; Cozzi, NV; Martins, CPB. Microwave-accelerated synthesis of psychoactive deuterated N,N-dialkylated-[α,α,β,β-d4]-tryptamines. J. Labelled Compd. Radiopharm., 1 Nov 2008, 51 (14), 423–429. 169 kB. https://doi.org/10.1002/jlcr.1557

Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. https://doi.org/10.1016/S0376-8716(99)00148-9

Brandt, SD; Freeman, S; Fleet, IA; Alder, JF. Analytical chemistry of synthetic routes to psychoactive tryptamines. Part III. Characterisation of the Speeter and Anthony route to N,N-dialkylated tryptamines using CI-IT-MS-MS. Analyst, 1 Jan 2005, 130 (9), 1258–1262. 250 kB. https://doi.org/10.1039/b504001a

Ciprian-Ollivier, J; Cetkovich-Bakmas, MG. Altered consciousness states and endogenous psychoses: a common molecular pathway? Schizophr. Res., 19 Dec 1997, 28 (2–3), 257–265. 722 kB. https://doi.org/10.1016/S0920-9964(97)00116-3

Bõszõrményi, Z; Szára, S. Dimethyltryptamine experiments with psychotics. Br. J. Psychiatry, 1 Apr 1958, 104 (435), 445–453. 1.3 MB. https://doi.org/10.1192/bjp.104.435.445

Kline, TB; Benington, F; Morin, RD; Beaton, JM; Glennon, RA; Domelsmith, LN; Houk, KN; Rozeboom, MD. Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives. J. Med. Chem., 1 Jan 1982, 25 (11), 1381–1383. 378 kB. https://doi.org/10.1021/jm00353a021

Glennon, RA; Gessner, PK. Serotonin receptor binding affinities of tryptamine analogues. J. Med. Chem., 1 Jan 1979, 22 (4), pp 428–432. 731 kB. https://doi.org/10.1021/jm00190a014

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001

Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255

Shulgin, AT. Profiles of psychedelic drugs. 1. DMT; 2. TMA-2. J. Psychedelic Drugs, 1 Jan 1976, 8 (2), 167–169. 2.1 MB. https://doi.org/10.1080/02791072.1976.10471846

Fontanilla, D; Johannessen, M; Hajipour, AR; Cozzi, NV; Jackson, MB; Ruoho, AE. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science, 13 Feb 2009, 323 (5916), 934–937. 529 kB. https://doi.org/10.1126/science.1166127

McKenna, DJ. Monoamine oxidsase inhibitors in Amazonian hallucinogenic plants: Ethnobotanical, phytochemical, and pharmacological investigations. Ph. D. Thesis, University of British Columbia, BC, Canada, 26 Apr 1984. 12.2 MB.

Barker, SA; McIlhenny, EH; Strassman, R. A critical review of reports of endogenous psychedelic N,N-dimethyltryptamines in humans: 1955–2010. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 617-635. 270 kB. https://doi.org/10.1002/dta.422

Brandt, SD; Freeman, S; Fleet, IA; McGagh, P; Alder, JF. Analytical chemistry of synthetic routes to psychoactive tryptamines. Part II. Characterisation of the Speeter and Anthony synthetic route to N,N-dialkylated tryptamines using GC-EI-ITMS, ESI-TQ-MS-MS and NMR. Analyst, 2005, 130 (3), 330–344. 403 kB. https://doi.org/10.1039/b413014f

Martins, CP; Freeman, S; Alder, JF; Brandt, SD. Characterisation of a proposed internet synthesis of N,N-dimethyltryptamine using liquid chromatography/electrospray ionisation tandem mass spectrometry. J. Chromatogr. A, 14 Aug 2009, 1216 (33), 6119–6123. 315 kB. https://doi.org/10.1016/j.chroma.2009.06.060

Su, T; Hayashi, T; Vaupel, DB. When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor. Sci. Signal., 10 Mar 2009, 2 (61), 1–4. 392 kB. https://doi.org/10.1126/scisignal.261pe12

Strassman, RJ. Human psychopharmacology of N,N,-dimethyltryptamine. Behav. Brain Res., 15 Dec 1995, 73 (1–2), 121–124. 396 kB. https://doi.org/10.1016/0166-4328(96)00081-2

McKenna, DJ; Repke, DB; Lo, L; Peroutka, SJ. Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology, 1 Mar 1990, 29 (3), 191–198. 679 kB. https://doi.org/10.1016/0028-3908(90)90001-8

Szara, S; Axelrod, J. Hydroxylation and N-demethylation of N,N-dimethyltryptamine. Experientia, 1 Jun 1959, 15 (6), 216–217. 304 kB. https://doi.org/10.1007/BF02158111

Kalir, A; Szara, S. Synthesis and pharmacological activity of alkylated tryptamines. J. Med. Chem., 1 May 1966, 9 (3), 341–344. 482 kB. https://doi.org/10.1021/jm00321a017

Gornez-Jeria, JS; Morales-Lagos, D; Cassels, BK; Saavedra-Aguilar, JC. Electronic structure and serotonin receptor binding affinity of 7-substituted tryptamines QSAR of 7-substituted tryptamines. Quant. Struct.-Act. Relat., 1986, 5 (4), 153–157. 577 kB. https://doi.org/10.1002/qsar.19860050404

Jensen, N. Tryptamines as ligands and modulators of the serotonin 5-HT2A receptor and the isolation of aeruginascin from the hallucinogenic mushroom Inocybe aeruginascens. Ph. D. Thesis, Georg-August-Universität zu Göttingen, Göttingen, Germany, 4 Nov 2004. 2.3 MB. Referent: Prof. Dr. H. Laatsch; Korreferent: Prof. D. E. Nichols.

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

McIlhenny, EH; Pipkin, KE; Standish, LJ; Wechkin, HA; Strassman, R; Barker, SA. Direct analysis of psychoactive tryptamine and harmala alkaloids in the Amazonian botanical medicine ayahuasca by liquid chromatography–electrospray ionization-tandem mass spectrometry. J. Chromatogr. A, 18 Dec 2009, 1216 (51), 8960–8968. 450 kB. https://doi.org/10.1016/j.chroma.2009.10.088

Fenderson5555. Mechanisms in DMT synthesis. , 3 Jan 2011. . Fenderson5555 2.6 MB.

Fenderson5555. DMT from tryptophan? , 23 Mar 2011. . Fenderson5555 3.9 MB. Big hug to W. Snow for kindly filling this gap in the collection.

Brandt, SD; Moore, SA; Freeman, S; Kanu, AB. Characterization of the synthesis of N,N-dimethyltryptamine by reductive amination using gas chromatography ion trap mass spectrometry. Drug Test. Analysis, 1 Jul 2010, 2 (7), 330–338. 192 kB. https://doi.org/10.1002/dta.142

Pires, APS; de Oliveira, CDR; Moura, S; Dõrr, FA; Silva, WAE; Yonamine, M. Gas chromatographic analysis of dimethyltryptamine and β-carboline alkaloids in ayahuasca, an Amazonian psychoactive plant beverage. Phytochem. Anal., 1 Mar 2009, 20 (2), 149–153. 131 kB. https://doi.org/10.1002/pca.1110

Brandt, SD; Martins, CP; Freeman, S; Dempster, N; Riby, PG; Gartz, J; Alder, JF. Halogenated solvent interactions with N,N-dimethyltryptamine: Formation of quaternary ammonium salts and their artificially induced rearrangements during analysis. Forensic Sci. Int., 4 Jul 2008, 178 (2–3), 162–170. 785 kB. https://doi.org/10.1016/j.forsciint.2008.03.013

Gaujac, A; Martinez, ST; Gomes, AA; de Andrade, SJ; da Cunha Pinto, A; David, JM; Navickiene, S; de Andrade, JB. Application of analytical methods for the structural characterization and purity assessment of N,N-dimethyltryptamine, a potent psychedelic agent isolated from Mimosa tenuiflora inner barks. Microchem. J., Jul 2013, 109, 78-83. 685 kB. https://doi.org/10.1016/j.microc.2012.03.033

Moura, S; Carvalho, FG; de Oliveira, CDR; Pinto, E; Yonamine, M. qNMR: An applicable method for the determination of dimethyltryptamine in ayahuasca, a psychoactive plant preparation. Phytochem. Lett., 11 Jun 2010, 3 (2), 79–83. 227 kB. https://doi.org/10.1016/j.phytol.2009.12.004

Szára, S. The comparison of the psychotic effect of tryptamine derivatives with the effects of mescaline and LSD-25 in self-experiments. In Psychotropic Drugs [proceedings]; Garattini, S; Ghetti, V, Eds., Elsevier, 1957; pp 460–467. 480 kB.

Gambelunghe, C; Aroni, K; Rossi, R; Moretti, L; Bacci, M. Identification of N,N-dimethyltryptamine and β-carbolines in psychotropic ayahuasca beverage. Biomed. Chromatogr., 1 Oct 2008, 22 (10), 1056–1059. 140 kB. https://doi.org/10.1002/bmc.1023

McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed. Chromatogr., 1 Sep 2011, 25 (9), 970–984. 1.0 MB. https://doi.org/10.1002/bmc.1551

McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed. Chromatogr., 1 Mar 2012, 26 (3), 301–313. 557 kB. https://doi.org/10.1002/bmc.1657

Barker, SA; Borjigin, J; Lomnicka, I; Strassman, R. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomed. Chromatogr., 1 Dec 2013, 27 (12), 1690-1700. 929 kB. https://doi.org/10.1002/bmc.2981

Rodriguez-Cruz, SE. Analysis and characterization of designer tryptamines using electrospray ionization mass spectrometry (ESI-MS). Microgram J., 1 Jul 2005, 3 (3–4), 107–129. 1.6 MB.

Fasanello, JA; Placke, AD. The isolation, identification, and quantitation of dimethyltryptamine (DMT) in Mimosa Hostilis. Microgram J., 1 Jan 2007, 5 (1–4), 41–52. 168 kB.

Blackledge, RD; Taylor, CM. Psychotria viridis—A botanical source of dimethyltryptamine (DMT). Microgram J., 1 Jan 2003, 1 (1–2), 18–22. 429 kB.

Gaujac, A; Ford, JL; Dempster, NM; de Andrade, JB; Brandt, SD. Investigations into the polymorphic properties of N,N-dimethyltryptamine by X-ray diffraction and differential scanning calorimetry. Microchem. J., 1 Sep 2013, 110, 146–157. 1.2 MB. https://doi.org/10.1016/j.microc.2013.03.009

Jacob, MS; Presti, DE. Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med. Hypotheses, 2005, 64 (5), 930–937. 162 kB. https://doi.org/10.1016/j.mehy.2004.11.005

Blough, BE; Landavazo, A; Decker, AM; Partilla, JS; Baumann, MH; Rothman, RB. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 1 Oct 2014, 231 (21), 4135-4144. 298 kB. https://doi.org/10.1007/s00213-014-3557-7

Dinger, J; Woods, C; Brandt, SD; Meyer, MR; Maurer, HH. Cytochrome P450 inhibition potential of new psychoactive substances of the tryptamine class. Toxicol. Lett., 2016, 241, 82-94. 2.6 MB. https://doi.org/10.1016/j.toxlet.2015.11.013

Meyer, MR; Caspar, A; Brandt, SD; Maurer, HH. A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches. Anal. Bioanal. Chem., 1 Jan 2014, 406 (1), 225–237. 457 kB. https://doi.org/10.1007/s00216-013-7425-9

Taylor, EW; Nikam, S; Weck, B; Martin, A; Nelson, D. Relative selectivity of some conformationally constrained tryptamine analogs at 5-HT1, 5-HT1A and 5-HT2 recognition sites. Life Sci., 19 Oct 1987, 41 (16), 1961–1969. 622 kB. https://doi.org/10.1016/0024-3205(87)90749-1

Fricke, J; Blei, F; Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed., 20 Aug 2017, 56 (40), 12352-12355. 1.8 MB. https://doi.org/10.1002/anie.201705489

Brandt, SD; Martins, CP. Analytical methods for psychoactive N,N-dialkylated tryptamines. Trends Anal. Chem., 1 Sep 2010, 29 (8), 858–869. 446 kB. https://doi.org/10.1016/j.trac.2010.04.008 #1

Swanson, LR. Unifying theories of psychedelic drug effects. Front. Pharmacol., 2 Mar 2018, 9 n/a. 1.7 MB. https://doi.org/10.3389/fphar.2018.00172

Chu, UB; Vorperian, SK; Satyshur, K; Eickstaedt, K; Cozzi, NV; Mavlyutov, T; Hajipour, AR; Ruoho, AE. Noncompetitive Inhibition of Indolethylamine-N-methyltransferase by N,N-Dimethyltryptamine and N,N-Dimethylaminopropyltryptamine. Biochemistry, 13 May 2014, 53 (18), 2956-2965. 3.4 MB. https://doi.org/10.1021/bi500175p

Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476

Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #64

Buchanan, MS; Carroll, AR; Pass, D; Quinn, RJ. NMR spectral assignments of a new chlorotryptamine alkaloid and its analogues from Acacia confusa. Magn. Reson. Chem., 1 Apr 2007, 45 (4), 359-361. 103 kB. https://doi.org/10.1002/mrc.1959 #3

Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9

Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #1

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Barrett, FS; Griffiths, RR. Classic hallucinogens and mystical experiences: Phenomenology and neural correlates. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 137-158. 848 kB. https://doi.org/10.1007/7854_2017_474

Bogenschutz, MP; Ross, S. Therapeutic applications of classic hallucinogens. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 361-391. 360 kB. https://doi.org/10.1007/7854_2016_464

Lladó-Pelfort, L; Celada, P; Riga, M; Troyano-Rodríguez,, E. Effect of hallucinogens on neuronal activity. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 75-105. 902 kB. https://doi.org/10.1007/7854_2017_473

Carbonaro, TM; Gatch, MB. Neuropharmacology of N,N-dimethyltryptamine. Brain Res. Bull., 1 Sep 2016, 126-1, 74-88. 813 kB. https://doi.org/10.1016/j.brainresbull.2016.04.016

Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)

McKenna, D; Riba, J. New world tryptamine hallucinogens and the neuroscience of ayahuasca. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2016; pp 283-311. 749 kB. https://doi.org/10.1007/7854_2016_472

Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 2016, 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001

Burns, L; Roxburgh, A; Bruno, R; Van Buskirk, J. Monitoring drug markets in the Internet age and the evolution of drug monitoring systems in Australia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 840-845. 113 kB. https://doi.org/10.1002/dta.1613

Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42

Wang, Y; Chen, C. Synthesis of deuterium labeled tryptamine derivatives. J. Chin. Chem. Soc., 1 Oct 2007, 54 (5), 1363-1368. 92 kB. https://doi.org/10.1002/jccs.200700194 #8

Szára, S. DMT at fifty. Neuropsychopharmacol. Hung., 1 Dec 2007, 9 (4), 201–205. 446 kB.

Ly, C; Greb, AC; Cameron, LP; Wong, JM; Barragan, EV; Wilson, PC; Burbach, KF; Zarandi, SS; Sood, A; Paddy, MR; Duim, WC; Dennis, MY; McAllister, AK; Ori-McKenney, KM; Gray, JA; Olson, DE. Psychedelics promote structural and functional neural plasticity. Cell Rep., 1 Jun 2018, 23 (11), 3170–3182. 6.0 MB. https://doi.org/10.1016/j.celrep.2018.05.022 #DMT

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1994; pp 74–91. 51 kB.

Glennon, RA; Jacyno, JM; Young, R; McKenney, JD; Nelson, D. Synthesis and evaluation of a novel series of N,N-dimethylisotryptamines. J. Med. Chem., 1 Jan 1984, 27 (1), 41–45. 718 kB. https://doi.org/10.1021/jm00367a008 #1

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB. #4a

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #11

2,α-DMT
α,N-DMT
α-ET
NET
1,α-DMT
α,α-DMT
4-Me-α-MT
7-Me-AMT
N-Methylhomotryptamine
5-Ethyltryptamine
2787
Fenproporex
5786
CMMA
5-Me-AMT
21 July 2018 · Creative Commons BY-NC-SA ·