Exploring DET. To explore a different substance…

Names:
DET
T-9
3-[2-(Diethylamino)ethyl]indole
Tryptamine, N,N-diethyl
Indole, 3-[2-(diethylamino)ethyl]
N,N-Diethyltryptamine
IUPAC name:
N,N-Diethyl-2-(1H-indol-3-yl)ethan-1-amine
5003 · C14H20N2 · 216.322
InChI=1S/C14H20N2/c1-3-16(4-2)10-9-12-11-15-14-8-6-5-7-13(12)14/h5-8,11,15H,3-4,9-10H2,1-2H3
LSSUMOWDTKZHHT-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Bõszõrményi, Z; Dér, P. Observations on the psychotogenic effect of N,N diethyltryptamine, a new tryptamine derivative. Br. J. Psychiatry, 1 Jan 1959, 105 (438), 171–181. 1.4 MB. https://doi.org/10.1192/bjp.105.438.171

Szara, S; Hearst, E; Putney, F. Metabolism and behavioural action of psychotropic tryptamine homologues. Int. J. Neuropharmacol., 1 Nov 1962, 1 (1–3), 111–117. 1.1 MB. https://doi.org/10.1016/0028-3908(62)90015-1

Faillace, LA; Vourlekis, A; Szara, S. Clinical evaluation of some hallucinogenic tryptamine derivatives. J. Nerv. Ment. Dis., 1 Jan 1967, 145 (4), 306–313. 635 kB.

Szara, S. DMT (N,N-dimethyltryptamine) and homologues: Clinical and pharmacological considerations. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1970; pp 275–286. 1.9 MB.

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017

Meyers-Riggs, B. N-Alkylated tryptamines. countyourculture, countyourculture: rational exploration of the underground, 10 Mar 2012.

Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. https://doi.org/10.1016/j.talanta.2007.06.012

Gessner, PK; Godse, DD; Krull, AH; McMullan, JM. Structure-activity relationships among 5-methoxy-N:N-dimethyltryptamine, 4-hydroxy-N:N-dimethyltryptamine (psilocin) and other substituted tryptamines. Life Sci., 1 Mar 1968, 7 (5), 267–277. 362 kB. https://doi.org/10.1016/0024-3205(68)90200-2

Brandt, SD; Tirunarayanapuram, SS; Freeman, S; Dempster, N; Barker, SA; Daley, PF; Cozzi, NV; Martins, CPB. Microwave-accelerated synthesis of psychoactive deuterated N,N-dialkylated-[α,α,β,β-d4]-tryptamines. J. Labelled Compd. Radiopharm., 1 Nov 2008, 51 (14), 423–429. 169 kB. https://doi.org/10.1002/jlcr.1557

Brandt, SD; Freeman, S; Fleet, IA; Alder, JF. Analytical chemistry of synthetic routes to psychoactive tryptamines. Part III. Characterisation of the Speeter and Anthony route to N,N-dialkylated tryptamines using CI-IT-MS-MS. Analyst, 1 Jan 2005, 130 (9), 1258–1262. 250 kB. https://doi.org/10.1039/b504001a

Glennon, RA; Gessner, PK. Serotonin receptor binding affinities of tryptamine analogues. J. Med. Chem., 1 Jan 1979, 22 (4), pp 428–432. 731 kB. https://doi.org/10.1021/jm00190a014

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001

Brandt, SD; Freeman, S; Fleet, IA; McGagh, P; Alder, JF. Analytical chemistry of synthetic routes to psychoactive tryptamines. Part II. Characterisation of the Speeter and Anthony synthetic route to N,N-dialkylated tryptamines using GC-EI-ITMS, ESI-TQ-MS-MS and NMR. Analyst, 2005, 130 (3), 330–344. 403 kB. https://doi.org/10.1039/b413014f

Gartz, J. Biotransformation of tryptamine derivatives in mycelia cultures of Psilocybe. J. Basic. Microbiol., 1989, 29 (6), 347–352. 357 kB. https://doi.org/10.1002/jobm.3620290608

Kalir, A; Szara, S. Synthesis and pharmacological activity of alkylated tryptamines. J. Med. Chem., 1 May 1966, 9 (3), 341–344. 482 kB. https://doi.org/10.1021/jm00321a017

Gornez-Jeria, JS; Morales-Lagos, D; Cassels, BK; Saavedra-Aguilar, JC. Electronic structure and serotonin receptor binding affinity of 7-substituted tryptamines QSAR of 7-substituted tryptamines. Quant. Struct.-Act. Relat., 1986, 5 (4), 153–157. 577 kB. https://doi.org/10.1002/qsar.19860050404

Szára, S. The comparison of the psychotic effect of tryptamine derivatives with the effects of mescaline and LSD-25 in self-experiments. In Psychotropic Drugs [proceedings]; Garattini, S; Ghetti, V, Eds., Elsevier, 1957; pp 460–467. 480 kB.

McIlhenny, EH; Riba, J; Barbanoj, MJ; Strassman, R; Barker, SA. Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed. Chromatogr., 1 Mar 2012, 26 (3), 301–313. 557 kB. https://doi.org/10.1002/bmc.1657

Rodriguez-Cruz, SE. Analysis and characterization of designer tryptamines using electrospray ionization mass spectrometry (ESI-MS). Microgram J., 1 Jul 2005, 3 (3–4), 107–129. 1.6 MB.

Blough, BE; Landavazo, A; Decker, AM; Partilla, JS; Baumann, MH; Rothman, RB. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology, 1 Oct 2014, 231 (21), 4135-4144. 298 kB. https://doi.org/10.1007/s00213-014-3557-7

Brandt, SD; Martins, CP. Analytical methods for psychoactive N,N-dialkylated tryptamines. Trends Anal. Chem., 1 Sep 2010, 29 (8), 858–869. 446 kB. https://doi.org/10.1016/j.trac.2010.04.008 #8

Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Analysis, 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42

Wang, Y; Chen, C. Synthesis of deuterium labeled tryptamine derivatives. J. Chin. Chem. Soc., 1 Oct 2007, 54 (5), 1363-1368. 92 kB. https://doi.org/10.1002/jccs.200700194 #5

Szára, S. DMT at fifty. Neuropsychopharmacol. Hung., 1 Dec 2007, 9 (4), 201–205. 446 kB.

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1994; pp 74–91. 51 kB.

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB. #4b

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #29a

MIPT
α-MIPT
MPT
NBT
NIBT
NSBT
NTBT
1-Pr-AMT
7-Pr-AMT
5-Et-DMT
7-Et-DMT
N-Isopropylhomotryptamine
2781
705
10612
5-Me-MET
21 July 2018 · Creative Commons BY-NC-SA ·