Exploring 2C-H. To explore a different substance…

Names:
2C-H · 25H · 2,5-Dimethoxyphenethylamine
IUPAC name:
2-(2,5-Dimethoxyphenyl)ethan-1-amine
ID: 32 · Formula: C10H15NO2 · Molecular weight: 181.232
InChI: InChI=1S/C10H15NO2/c1-12-9-3-4-10(13-2)8(7-9)5-6-11/h3-4,7H,5-6,11H2,1-2H3

Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Current Topics in Behavioral Neurosciences; , 2016; pp 1–29. 826 kB. http://dx.doi.org/10.1007/7854_2016_64

Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. http://dx.doi.org/10.1002/omr.1270210611

Villalobos, CA; Bull, P; Sáez, P; Cassels, BK; Huidobro-Toro, JP. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br. J. Pharmacol., 1 Apr 2004, 141 (7), 1167–1174. 271 kB. http://dx.doi.org/10.1038/sj.bjp.0705722

Kanai, K; Takekawa, K; Kumamoto, T; Ishikawa, T; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol., 1 Nov 2008, 26 (2), 6–12. 406 kB. http://dx.doi.org/10.1007/s11419-008-0041-2

Clark, LC; Benington, F; Morin, RD. The effects of ring-methoxyl groups on biological deamination of phenethylamines. J. Med. Chem., 1 May 1965, 8 (3), 353–355. 389 kB. http://dx.doi.org/10.1021/jm00327a016

Maher, HM; Awad, T; DeRuiter, J; Clark, CR. GC-MS and GC-IRD studies on dimethoxyphenethylamines (DMPEA): Regioisomers related to 2,5-DMPEA. J. Chromatogr. Sci., 1 Jan 2012, 50 (1), 1–9. 594 kB. http://dx.doi.org/10.1093/chromsci/bmr013

Meyer, MR; Robert, A; Maurer, HH. Toxicokinetics of novel psychoactive substances: Characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs. Toxicol. Lett., 5 Jun 2014, 227 (2), 124–128. 865 kB. http://dx.doi.org/10.1016/j.toxlet.2014.03.010

Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. http://dx.doi.org/10.1007/s11064-014-1253-y

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. BLOTTER, 1 Aug 2015, 1 (1). 2.6 MB. http://dx.doi.org/10.16889/isomerdesign-1 Open access DOI

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. Supplementary Data. BLOTTER, 1 Aug 2015, 1 (1). 11.9 MB. http://dx.doi.org/10.16889/isomerdesign-1-supp Open access DOI

Lewin, AH; Navarro, HA; Mascarella, SW. Structure-activity correlations for β-phenethylamines at human trace amine receptor 1. Bioorg. Med. Chem., 1 Aug 2008, 16 (15). 366 kB. http://dx.doi.org/10.1016/j.bmc.2008.06.009

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. http://dx.doi.org/10.1021/jm00177a017

Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB.

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB.

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. http://dx.doi.org/10.1002/dta.413

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. http://dx.doi.org/10.1124/jpet.106.117507

Rangisetty, JB; Dukat, M; Dowd, CS; Herrick-Davis, K; DuPre, A; Gadepalli, S; Teitler, M; Kelley, CR; Sharif, NA; Glennon, RA. 1-[2-Methoxy-5-(3-phenylpropyl)]-2-aminopropane unexpectedly shows 5-HT2A serotonin receptor affinity and antagonist character. J. Med. Chem., 1 Jan 2001, 44 (20), 3283–3291. 115 kB. http://dx.doi.org/10.1021/jm0100739

Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. http://dx.doi.org/10.1038/sj.bjp.0704747

Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. http://dx.doi.org/10.1124/mol.107.039255

Braden, MR; Parrish, JC; Naylor, JC; Nichols, DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol. Pharmacol., 1 Jan 2006, 70 (6), 1956–1964. 361 kB. http://dx.doi.org/10.1124/mol.106.028720

Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. http://dx.doi.org/10.1007/s10822-010-9400-2

Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB.

25H-NBOH
DMPEA-NBOMe · 25H-NBOMe
25H-NB
N-Me-2,5-DMPEA · 25H-NMe
25H-NPro
N,N-Me-2,5-DMPEA
25H-NB3OMe
25H-NB4OMe
25H-NBF
2,5-DMA
4C-DMA · 4C-H
α-Carboxy-2C-H
β-Me-2,5-DMPEA
β-HO-2,5-DMPEA
BODM
β-HO,Me-2,5-DMPEA
2,5-HMPEA
2C-H-2-iPrO
2,3,5-MBM
2,5,3-2C-T-7
TMPEA-4
2C-B
2C-C
2C-D
2C-E
2C-F
2C-I
2C-N
2C-O-4
2C-P
2C-SE
2C-T
2C-T-2
2C-T-4
2C-T-7
2C-T-8
2C-T-9
2C-T-13
2C-T-15
2C-T-17
2C-T-21
TMPEA
2C-CN
2C-CA · 2C-COOH
2C-TFM
2C-O-2
2C-O-7
2C-O-19
2C-SE-2
2C-SE-4
2C-SE-7
2C-SE-21
2C-TE
2C-T-10
2C-T-11
2C-T-12
2C-T-14
2C-T-5
2C-T-16
2C-T-6
2C-T-19
2C-T-21.5
2C-T-22
2C-T-18
2C-T-23
2C-YN
2C-pEtOH
2C-pKet
2C-T-3
2C-T-25
2C-T-27
2C-T-28
2C-T-30
2C-T-31
2C-T-32
2C-T-33
2C-VI
2C-BI-1
2C-BI-2
2C-BI-3
2C-BI-4
2C-BI-5
2C-BI-6
2C-BI-7
2C-BI-8
2C-BI-9
2C-BI-10
2C-BI-11
2C-BI-12
2326
2324
2327
2C-IP
2C-EF
2C-NH
2C-HM
2C-IB
2C-TFE
2C-O-22
2C-O-21.5
2C-O-21
2C-A
2-MPEA
2364
5TF-2C-H
5-HO-2-MPEA
5-BzO-2-MPEA
5-I-2-MPEA
5-PhEtO-2-MPEA
5-pBrPhEtO-2-MPEA
5-Bz-2-MPEA
5-PhEt-2-MPEA
5-PhPr-2-MPEA
2CLisaH
5,8-ADT
2,5-DMPEA-βk
2,5-DMAI
1146
2,3-DMBZP · 2,5-DMBZP
936
937
939
940
3,4-DMPEA · DMPEA
N-Me-GEA
2,4-DMPEA
β-HO-PMA · 4-Methoxynorephedrine
2,3-DMPEA
2,6-DMPEA
3,5-DMPEA
MHA
BO3M
β-HO-Hordenine
β-MeO-HMePEA
β-HO-HMA · Oxilofrine
β,4-DMPEA
N-HO-PMA
N,N-Me-2,3-DHPEA
β,2-MHPEA-3
2,4-HMA
N,N-Me-DHPEA
N-Et-DHPEA
DHMA
DH-α-Et-PEA
β-Me-GEA
N-Me-HMPEA
HMA
β,2-HO-5,N-MePEA
β,2-HO-5-MeA
β-HO-2-M-5-MePEA
2,5-HMA
2,5-DES-Me-DOM
597
5HMA
HMA (32HMA)
25H-NBOH
DMPEA-NBOMe · 25H-NBOMe
25H-NB
N-Me-2,5-DMPEA · 25H-NMe
25H-NPro
N,N-Me-2,5-DMPEA
25H-NB3OMe
25H-NB4OMe
25H-NBF
2,5-DMA
4C-DMA · 4C-H
α-Carboxy-2C-H
β-Me-2,5-DMPEA
β-HO-2,5-DMPEA
BODM
β-HO,Me-2,5-DMPEA
2,5-HMPEA
2C-H-2-iPrO
2,3,5-MBM
2,5,3-2C-T-7
TMPEA-4
2C-B
2C-C
2C-D
2C-E
2C-F
2C-I
2C-N
2C-O-4
2C-P
2C-SE
2C-T
2C-T-2
2C-T-4
2C-T-7
2C-T-8
2C-T-9
2C-T-13
2C-T-15
2C-T-17
2C-T-21
TMPEA
2C-CN
2C-CA · 2C-COOH
2C-TFM
2C-O-2
2C-O-7
2C-O-19
2C-SE-2
2C-SE-4
2C-SE-7
2C-SE-21
2C-TE
2C-T-10
2C-T-11
2C-T-12
2C-T-14
2C-T-5
2C-T-16
2C-T-6
2C-T-19
2C-T-21.5
2C-T-22
2C-T-18
2C-T-23
2C-YN
2C-pEtOH
2C-pKet
2C-T-3
2C-T-25
2C-T-27
2C-T-28
2C-T-30
2C-T-31
2C-T-32
2C-T-33
2C-VI
2C-BI-1
2C-BI-2
2C-BI-3
2C-BI-4
2C-BI-5
2C-BI-6
2C-BI-7
2C-BI-8
2C-BI-9
2C-BI-10
2C-BI-11
2C-BI-12
2326
2324
2327
2C-IP
2C-EF
2C-NH
2C-HM
2C-IB
2C-TFE
2C-O-22
2C-O-21.5
2C-O-21
2C-A
2-MPEA
2364
5TF-2C-H
5-HO-2-MPEA
5-BzO-2-MPEA
5-I-2-MPEA
5-PhEtO-2-MPEA
5-pBrPhEtO-2-MPEA
5-Bz-2-MPEA
5-PhEt-2-MPEA
5-PhPr-2-MPEA
2CLisaH
5,8-ADT
2,5-DMPEA-βk
2,5-DMAI
1146
2,3-DMBZP · 2,5-DMBZP
936
937
939
940
3,4-DMPEA · DMPEA
N-Me-GEA
2,4-DMPEA
β-HO-PMA · 4-Methoxynorephedrine
2,3-DMPEA
2,6-DMPEA
3,5-DMPEA
MHA
BO3M
β-HO-Hordenine
β-MeO-HMePEA
β-HO-HMA · Oxilofrine
β,4-DMPEA
N-HO-PMA
N,N-Me-2,3-DHPEA
β,2-MHPEA-3
2,4-HMA
N,N-Me-DHPEA
N-Et-DHPEA
DHMA
DH-α-Et-PEA
β-Me-GEA
N-Me-HMPEA
HMA
β,2-HO-5,N-MePEA
β,2-HO-5-MeA
β-HO-2-M-5-MePEA
2,5-HMA
2,5-DES-Me-DOM
597
5HMA
HMA (32HMA)
19 September 2017 · Creative Commons BY-NC-SA ·