Exploring Amphetamine. To explore a different substance…

Names:
A · Amphetamine
IUPAC name:
1-Phenylpropan-2-amine
ID: 2006 · Formula: C9H13N · Molecular weight: 135.206
InChI: InChI=1S/C9H13N/c1-8(10)7-9-5-3-2-4-6-9/h2-6,8H,7,10H2,1H3

Heal, DJ; Smith, SL; Gosden, J; Nutt, DJ. Amphetamine, past and present—a pharmacological and clinical perspective. J. Psychopharmacol., 1 Jun 2013, 27 (6), 479–496. 740 kB. http://dx.doi.org/10.1177/0269881113482532

Rasmussen, N. Making the first anti-depressant: Amphetamine in American medicine, 1929-1950. J. Hist. Med. Allied Sci., 1 Jul 2006, 61 (3), 288–323. 175 kB. http://dx.doi.org/10.1093/jhmas/jrj039

Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 305–313. 10.7 MB. http://dx.doi.org/10.1080/02791072.1986.10472362

Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 2002, 1634–1638. 115 kB. http://dx.doi.org/10.1039/b200607c

Baumann, MH; Partilla, JS; Lehner, KR; Thorndike, EB; Hoffman, AF; Holy, M; Rothman, RB; Goldberg, SR; Lupica, CR; Sitte, HH; Brandt, SD; Tella, SR; Cozzi, NV; Schindler, CW. Powerful Cocaine-Like Actions of 3,4-Methylenedioxypyrovalerone (MDPV), a Principal Constituent of Psychoactive ‘Bath Salts’ Products. Neuropsychopharmacology, 1 Mar 2013, 38 (4), 552-562. 1.4 MB. http://dx.doi.org/10.1038/npp.2012.204

Hathaway, BA; Nichols, DE; Nichols, MB; Yim, GKW. A new, potent, conformationally-restricted analogue of amphetamine: 2-amino-1,2-dihydronaphthalene. J. Med. Chem., 1 Jan 1982, 25 (5), 535–538. 563 kB. http://dx.doi.org/10.1021/jm00347a011

Glennon, RA; Liebowitz, SM. Serotonin receptor affinity of cathinone and related analogues. J. Med. Chem., 1 Jan 1982, 25 (4), 393–397. 665 kB. http://dx.doi.org/10.1021/jm00346a012

Benington, F; Morin, RD; Clark, LC. Behavioral and neuropharmacological actions of N-aralkylhydroxylamines and their O-methyl ethers. J. Med. Chem., 1 Jan 1965, 8 (1), 100–104. 634 kB. http://dx.doi.org/10.1021/jm00325a020

Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. http://dx.doi.org/10.1021/jm00295a007

Nichols, DE; Barfknecht, CF; Rusterholz, DB; Benington, F; Morin, RD. Asymmetric synthesis of psychotomimetic phenylisopropylamines. J. Med. Chem., 1 Jan 1973, 16 (5), 480–483. 515 kB. http://dx.doi.org/10.1021/jm00263a013

McGraw, NP; Callery, PS; Castagnoli, N. In vitro stereoselective metabolism of the psychotomimetic amine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. An apparent enantiomeric interaction. J. Med. Chem., 1 Jan 1977, 20 (2), 185–189. 661 kB. http://dx.doi.org/10.1021/jm00212a001

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. http://dx.doi.org/10.1021/jm00177a017

Horn, AS. Structure-activity relations for the inhibition of catecholamine uptake into synaptosomes from noradrenaline and dopaminergic neurones in rat brain homogenates. Br. J. Pharmacol., 1 Feb 1973, 47 (2), 332–338. 903 kB. http://dx.doi.org/10.1111/j.1476-5381.1973.tb08331.x

Ögren, S; Ross, SB. Substituted amphetamine derivatives. II. Behavioural effects in mice related to monoaminergic neurones. Acta Pharmacol. Toxicol., 1 Oct 1977, 41 (4), 353–368. 1.3 MB. http://dx.doi.org/10.1111/j.1600-0773.1977.tb02674.x

Meyers-Riggs, B. Phenethylamine and amphetamine. countyourculture, countyourculture: rational exploration of the underground, 2 Nov 2010.

Worsham, JN. 5-HT3 receptor ligands and their effect on psychomotor stimulants. M. Sc. Thesis, Virginia Commonwealth University, Richmond, VA, USA, 1 May 2008. 956 kB.

Lurie, IS; Bozenko, JS; Li, L; Miller, EE; Greenfield, SJ. Chiral separation of methamphetamine and related compounds using capillary electrophoresis with dynamically coated capillaries. Microgram J., 1 Jan 2011, 8 (1), 24–28. 786 kB.

Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.

Alles, GA; Feigen, GA. Comparative physiological actions of phenyl-, thienyl- and furylisopropylamines. J. Pharmacol. Exp. Ther., 1 Jul 1941, 72 (3), 265–275. 1.5 MB.

Warren, RJ; Begosh, PP; Zarembo, JE. Identification of amphetamines and related sympathomimetic amines. J. Assoc. Off. Anal. Chem., 1971, 54 (5), 1179–1191. 3.9 MB.

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 8–15. 457 kB.

Guy, M; Freeman, S; Alder, JF; Brandt, SD. The Henry reaction: spectroscopic studies of nitrile and hydroxylamine by-products formed during synthesis of psychoactive phenylalkylamines. Cent. Eur. J. Chem., 1 Dec 2008, 6 (4), 526–534. 982 kB. http://dx.doi.org/10.2478/s11532-008-0054-z

Rothman, RB; Blough, BE; Baumann, MH. Dual dopamine/serotonin releasers as potential medications for stimulant and alcohol addictions. AAPS J., 2007, 9 (1), E1–E10. 999 kB. http://dx.doi.org/10.1208/aapsj0901001

Galloway, G; Shulgin, A; Kornfeld, H; Frederick, S. Amphetamine, not MDMA, is associated with intracranial hemorrhage. J. Accid. Emerg. Med., 1 Jan 1995, 12 (3), 231–2. 428 kB. http://dx.doi.org/10.1136/emj.12.3.231 The target of Sasha’s critique: Intracranial haemorrhage associated with ingestion of ‘Ecstasy’.

Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. http://dx.doi.org/10.1124/jpet.106.103622

Glennon, RA; McKenney, JD; Lyon, RA; Titeler, M. 5-HT1 and 5-HT2 binding characteristics of 1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane analogs. J. Med. Chem., 1 Feb 1986, 29 (2), 194–199. 919 kB. http://dx.doi.org/10.1021/jm00152a005

Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. http://dx.doi.org/10.1021/jm00144a009

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. http://dx.doi.org/10.1021/jm00082a014

Oberlender, R; Nichols, DE. Structural variation and (+)-amphetamine-like discriminative stimulus properties. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 581–586. 586 kB. http://dx.doi.org/10.1016/0091-3057(91)90017-V

Aceto, MD; Rosecrans, JA; Young, R; Glennon, RA. Similarity between (+)-amphetamine and amfonelic acid. Pharmacol. Biochem. Behav., 1 Apr 1984, 20 (4), 635–637. 185 kB. http://dx.doi.org/10.1016/0091-3057(84)90316-2

Woolverton, WL; Shybut, G; Johanson, CE. Structure-activity relationships among some d-N-alkylated amphetamines. Pharmacol. Biochem. Behav., 1 Jan 1980, 13 (6), 869–876. 783 kB. http://dx.doi.org/10.1016/0091-3057(80)90221-X

Huang, X; Nichols, DE. 5-HT2 receptor-mediated potentiation of dopamine synthesis and central serotonergic deficits. Eur. J. Pharmacol., 1 Jan 1993, 238 (2–3), 291–296. 553 kB. http://dx.doi.org/10.1016/0014-2999(93)90859-G

Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. http://dx.doi.org/10.1016/0014-2999(82)90454-X

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. http://dx.doi.org/10.1016/0014-2999(81)90106-0

Marona-Lewicka, D; Kurrasch-Orbaugh, DM; Selken, JR; Cumbay, MG; Lisnicchia, JG; Nichols, DE. Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine1A receptor-mediated behavioural effects overlap its other properties in rats. Psychopharmacology, 1 Oct 2002, 164 (1), 93–107. 293 kB. http://dx.doi.org/10.1007/s00213-002-1141-z

Antun, F; Smythies, JR; Benington, F; Morin, RD; Barfknecht, CF; Nichols, DE. Native fluorescence and hallucinogenic potency of some amphetamines. Experientia, 15 Jan 1971, 27 (1), 62–63. 248 kB. http://dx.doi.org/10.1007/BF02137743

Oberlender, R; Nichols, DE. Drug discrimination studies with MDMA and amphetamine. Psychopharmacology, 1 May 1988, 95 (1), 71–26. 674 kB. http://dx.doi.org/10.1007/BF00212770

Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. http://dx.doi.org/10.1002/omr.1270210611

Thunhorst, M; Holzgrabe, U. Utilizing NMR spectroscopy for assessing drug enantiomeric composition. Magn. Reson. Chem., 1 Mar 1998, 36 (3), 211–216. 237 kB. http://dx.doi.org/10.1002/(SICI)1097-458X(199803)363211AID-OMR2463.0.CO;2-Y

Glennon, RA; Young, R; Martin, BR; Dal Cason, TA. Methcathinone (“Cat”): An enantiomeric potency comparison. Pharmacol. Biochem. Behav., 1 Jan 1995, 50 (4), 601–606. 709 kB. http://dx.doi.org/10.1016/0091-3057(94)00348-3

Bailey, K; Legault, D. Analysis of the 13C-NMR spectra of mono- and dimethylamphetamines. Anal. Chim. Acta., 1 Jan 1981, 123, 75–82. 654 kB. http://dx.doi.org/10.1016/S0003-2670(01)83160-3

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. http://dx.doi.org/10.1016/S0006-2952(97)00405-X

Suter, CM; Weston, AW. Some fluorinated amines of the pressor type. J. Am. Chem. Soc., 1 Feb 1941, 63 (2), 602–605. 444 kB. http://dx.doi.org/10.1021/ja01847a069

Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., Aug 1975, 47 (9), 841A–844a. 1.6 MB. http://dx.doi.org/10.1021/ac60359a050

Rothman, RB; Blough, BE; Baumann, MH. Dual dopamine-5-HT releasers: potential treatment agents for cocaine addiction. Trends Pharmacol. Sci., 1 Dec 2006, 27 (12), 612–618. 519 kB. http://dx.doi.org/10.1016/j.tips.2006.10.006

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. http://dx.doi.org/10.1016/j.pbb.2007.06.001

Bustamante, D; Diaz-Véliz, G; Paeile, C; Zapata-Torres, G; Cassels, BK. Analgesic and behavioral effects of amphetamine enantiomers, p-methoxyamphetamine and N-alkyl-p-methoxyamphetamine derivatives. Pharmacol. Biochem. Behav., 1 Oct 2004, 79 (2), 199–212. 404 kB. http://dx.doi.org/10.1016/j.pbb.2004.06.017

De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 697 kB. http://dx.doi.org/10.1016/j.lfs.2013.10.029

Stojanovska, N; Fu, S; Tahtouh, M; Kelly, T; Beavis, A; Kirkbride, KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int., 10 Jan 2013, 224 (1–3), 8–26. 813 kB. http://dx.doi.org/10.1016/j.forsciint.2012.10.040

Clarke, EGC. The identification of amphetamine type drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 31–36. 770 kB. http://dx.doi.org/10.1016/S0015-7368(67)70368-0

Lewin, AH; Navarro, HA; Mascarella, SW. Structure-activity correlations for β-phenethylamines at human trace amine receptor 1. Bioorg. Med. Chem., 1 Aug 2008, 16 (15). 366 kB. http://dx.doi.org/10.1016/j.bmc.2008.06.009

Vilches-Herrera, M; Miranda-Sepúlveda, J; Rebolledo-Fuentes, M; Fierro, A; Lühr, S; Iturriaga-Vasquez, P; Cassels, BK; Reyes-Parada, M. Naphthylisopropylamine and N-benzylamphetamine derivatives as monoamine oxidase inhibitors. Bioorg. Med. Chem., 15 Mar 2009, 17 (6), 2452–2460. 509 kB. http://dx.doi.org/10.1016/j.bmc.2009.01.074

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. http://dx.doi.org/10.1016/j.forsciint.2011.11.003

Jackson, B; Reed, A. Another abusable amphetamine. JAMA, 2 Feb 1970, 211 (5), 830–830. 186 kB. http://dx.doi.org/10.1001/jama.1970.03170050064024

MA · Methamphetamine
DIMETH
EA · Etilamfetamine
EEA · N,N-Diethylamphetamine
PA · Propylamphetamine
BA
HOT-A · AMPH-OH
Selegiline
N-TFEA
N-(2-Hydroxyethyl)amphetamine
1532
Benzphetamine
2570
2758
2757
2756
Clobenzorex
Fenproporex
DPIA · DPEA
1008
N-MeO-A
PEA
AEPEA · Phenylisobutylamine
Phentermine
α-FA
α-TFMA
β-Methoxyamphetamine
β-Aminoamphetamine
β-DFA
β-FA
Phenylpropanolamine
2-MeA · Ortetamine
2-MA
2-FA
2-CA
2-BA
2-TFMA
2-HA
2-EA
2-MTA
2-IA
3-MeA
3-MA · 3-Methoxyamphetamine
3-FA
3-TFMA · Norfenfluramine
3-HA · Gepefrine
3-CA
3-EA
3-MTA
3-BrA
3-IA
PMA
PMeA · 4-Methylamphetamine
4-FA
4-MTA
4-EA · 4-Ethoxyamphetamine
PCA
PHA · 4-Hydroxyamphetamine
2337
PIA
PBA
PAA
MePAA
DMePAA
PNA
TFMA
4-PrA
4-iPrA
4-PA
IPTA
PPhA
4-BzA
ETA
4-Butoxyamphetamine
2319
2320
1388
1389
1600
1387
Cathinone
α-PPP
2-AI
2-AT
PP
BZP
1-PEA · α-PEA
Benzylamine
homo-PEA
pip-PEA
AA
Phenmetrazine
PIAP
PZAP
cPr-PEA
bk-2-AT
2463
2465
2-ADN
Aminorex
4-MAR · 4-Methylaminorex
Phendimetrazine
P2P
1141
1307
Cyclazodone
Fenozolone
Pemoline
Thozalinone
1471
1497
1498
1499
1500
1502
1511
2759
Levamisole
Homoamphetamine
W-15
10825
10824
N-MePEA
β-Me-PEA
homo-PEA
2-MePEA
3-MePEA
4-MePEA
α,4-DMBA
N-M-1-PEA
α-Et-BA · 1-PPA
N-Et-Benzylamine
MA · Methamphetamine
DIMETH
EA · Etilamfetamine
EEA · N,N-Diethylamphetamine
PA · Propylamphetamine
BA
HOT-A · AMPH-OH
Selegiline
N-TFEA
N-(2-Hydroxyethyl)amphetamine
1532
Benzphetamine
2570
2758
2757
2756
Clobenzorex
Fenproporex
DPIA · DPEA
1008
N-MeO-A
PEA
AEPEA · Phenylisobutylamine
Phentermine
α-FA
α-TFMA
β-Methoxyamphetamine
β-Aminoamphetamine
β-DFA
β-FA
Phenylpropanolamine
2-MeA · Ortetamine
2-MA
2-FA
2-CA
2-BA
2-TFMA
2-HA
2-EA
2-MTA
2-IA
3-MeA
3-MA · 3-Methoxyamphetamine
3-FA
3-TFMA · Norfenfluramine
3-HA · Gepefrine
3-CA
3-EA
3-MTA
3-BrA
3-IA
PMA
PMeA · 4-Methylamphetamine
4-FA
4-MTA
4-EA · 4-Ethoxyamphetamine
PCA
PHA · 4-Hydroxyamphetamine
2337
PIA
PBA
PAA
MePAA
DMePAA
PNA
TFMA
4-PrA
4-iPrA
4-PA
IPTA
PPhA
4-BzA
ETA
4-Butoxyamphetamine
2319
2320
1388
1389
1600
1387
Cathinone
α-PPP
2-AI
2-AT
PP
BZP
1-PEA · α-PEA
Benzylamine
homo-PEA
pip-PEA
AA
Phenmetrazine
PIAP
PZAP
cPr-PEA
bk-2-AT
2463
2465
2-ADN
Aminorex
4-MAR · 4-Methylaminorex
Phendimetrazine
P2P
1141
1307
Cyclazodone
Fenozolone
Pemoline
Thozalinone
1471
1497
1498
1499
1500
1502
1511
2759
Levamisole
Homoamphetamine
W-15
10825
10824
N-MePEA
β-Me-PEA
homo-PEA
2-MePEA
3-MePEA
4-MePEA
α,4-DMBA
N-M-1-PEA
α-Et-BA · 1-PPA
N-Et-Benzylamine
25 July 2017 · Creative Commons BY-NC-SA ·