Exploring MDMA. To explore a different substance…

IUPAC names:
109 · C11H15NO2 · 193.242
SHXWCVYOXRDMCX-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Shulgin, AT. Ecstasy pill testing. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 12 Sep 2002.

Shulgin, AT. Roadblocks to entheogen research. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 12 Sep 2001.

Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.

Shulgin, AT. Thought policing MDMA users (AB 1416). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 20 Apr 2001.

Shulgin, AT. MDMA (Ecstasy) v. Methamphetamine. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Feb 2001.

Shulgin, AT. MDMA and its methylenedioxy ring. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 3 Jun 2003.

Shulgin, AT. Taking MDMA (Ecstasy) and other drugs when pregnant. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 28 Jan 2003.

Shulgin, AT. Making MDMA (II): “Ecstasy”, MDMA, & Safrole. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 1 May 2002.

Shulgin, AT. Making MDA, MDEA, MDMA. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Mar 2001.

Shulgin, AT. MDMA (Ecstasy) tolerance. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 10 Apr 2002.

Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. https://doi.org/10.1002/jps.2600690220

Shulgin, AT; Nichols, DE. Characterization of three new psychotomimetics. In The Psychopharmacology of Hallucinogens; Stillman, RC; Willette, RE, Eds., Pergamon Press, New York, 1978; pp 74–84. 547 kB.

Shulgin, AT. Drug testing hair for MDMA (Ecstasy). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 4 Mar 2005.

Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. https://doi.org/10.1002/cbdv.200690035

Sprague, JE; Huang, X; Kanthasamy, A; Nichols, DE. Attenuation of 3,4-methylenedioxymethamphetamine (MDMA) induced neurotoxicity with the serotonin precursors tryptophan and 5-hydroxytryptophan. Life Sci., 1 Jan 1994, 55 (15), 1193–1198. 336 kB. https://doi.org/10.1016/0024-3205(94)00658-X

Galloway, G; Shulgin, AT; Kornfeld, H; Frederick, SL. Amphetamine, not MDMA, is associated with intracranial hemorrhage. J. Accid. Emerg. Med., 1 Jan 1995, 12 (3), 231–2. 428 kB. https://doi.org/10.1136/emj.12.3.231 The target of Sasha’s critique: Intracranial haemorrhage associated with ingestion of ‘Ecstasy’.

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2.2 MB. https://doi.org/10.1520/JFS12874J

Shulgin, AT. What is MDMA? PharmChem Newsletter, 1 Jan 1985, 14 (3), 3–11. 952 kB.

Trudeau, GB. Ecstasy: Whither the future? In Doonesbury Deluxe; , Henry Holt and Company, 19 Aug 1985; . 3.3 MB.

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413

Baumann, MH; Ayestas, MA; Partilla, JS; Sink, JR; Shulgin, AT; Daley, PF; Brandt, SD; Rothman, RB; Ruoho, AE; Cozzi, NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology, 1 Apr 2012, 37, 1192–1203. 763 kB. https://doi.org/10.1038/npp.2011.304

Meyers-Riggs, B. The mirrored magic of MDMA. countyourculture, countyourculture: rational exploration of the underground, 23 May 2011.

Scorza, MC; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #30

Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. https://doi.org/10.1016/j.talanta.2007.06.012

Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. https://doi.org/10.1016/0014-2999(87)90173-7

Johnson, MP; Hoffman, AJ; Nichols, DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 16 Dec 1986, 132 (2–3), 269–276. 559 kB. https://doi.org/10.1016/0014-2999(86)90615-1

Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. https://doi.org/10.1007/BF03033455

de la Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. https://doi.org/10.1016/j.tips.2004.08.001

Sprague, JE; Nichols, DE. Neurotoxicity of MDMA (ecstasy): beyond metabolism. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 59–60. 60 kB. https://doi.org/10.1016/j.tips.2004.12.001

de la Torre, R; Farré, M; Monks, TJ; Jones, D. Response to Sprague and Nichols: Contribution of metabolic activation to MDMA neurotoxicity. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 60–61. 60 kB. https://doi.org/10.1016/j.tips.2004.12.004

Lieberman, JA; Mailman, RB; Duncan, G; Sikich, L; Chakos, M; Nichols, DE; Kraus, JE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol. Psychiat., 1 Dec 1998, 44 (11), 1099–1117. 154 kB. https://doi.org/10.1016/S0006-3223(98)00187-5

Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. https://doi.org/10.1016/j.forsciint.2004.06.016

Baumann, MH; Clark, RD; Budzynski, AG; Partilla, JS; Blough, BE; Rothman, RB. N-Substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or ‘Ecstasy’). Neuropsychopharmacology, 1 Mar 2005, 30 (3), 550–560. 184 kB. https://doi.org/10.1038/sj.npp.1300585

Puerta, E; Aguirre, N. Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’): Neurodegeneration versus neuromodulation. Pharmaceuticals, 5 Jul 2011, 4 (7), 992–1018. 411 kB. https://doi.org/10.3390/ph4070992

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001

Selken, J; Nichols, DE. α1-Adrenergic receptors mediate the locomotor response to systemic administration of (±)-3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol. Biochem. Behav., 1 Jan 2007, 86 (4), 622–630. 1.0 MB. https://doi.org/10.1016/j.pbb.2007.02.006

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.

Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1.5 MB.

Shulgin, AT; Jacob, P. Potential misrepresentation of 3,4-methylene-dioxyamphetamine (MDA). A toxicological warning. J. Anal. Toxicol., 1 Jan 1982, 6 (2), 71–75. 5.6 MB. https://doi.org/10.1093/jat/6.2.71

Nichols, DE; Hoffman, AJ; Oberlender, RA; Jacob, P; Shulgin, AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: Representatives of a novel therapeutic class. J. Med. Chem., 1 Oct 1986, 29 (10), 2009–2015. 1.0 MB. https://doi.org/10.1021/jm00160a035

Shulgin, AT. The background and chemistry of MDMA. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 291–304. 13.2 MB. https://doi.org/10.1080/02791072.1986.10472361

Brown, CR; McKinney, H; Osterloh, JD; Shulgin, AT; Jacob, P; Olson, KR. Severe adverse reaction to 3,4-methylenedioxymethamphetamine (MDMA). Vet. Hum. Toxicol., 1 Oct 1986, 28 (5), 490. 239 kB.

Nichols, DF; Oberlender, R. Structure-activity relationships of MDMA and related compounds: A new class of psychoactive agents? In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 105–131. 733 kB. https://doi.org/10.1007/978-1-4613-1485-1_7 #4

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M

Cozzi, NV; Sievert, MK; Shulgin, AT; Jacob, P; Ruoho, AE. Inhibition of plasma membrane monoamine transporters by β-ketoamphetamines. Eur. J. Pharmacol., 1 Jan 1999, 381 (1), 63–69. 111 kB. https://doi.org/10.1016/S0014-2999(99)00538-5

Nichols, DE; Lloyd, DH; Hoffman, AJ; Nichols, MB; Yim, GKW. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J. Med. Chem., 1 May 1982, 25 (5), 530–535. 804 kB. https://doi.org/10.1021/jm00347a010

Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 305–313. 10.7 MB. https://doi.org/10.1080/02791072.1986.10472362

Steele, TD; Nichols, DE; Yim, GKW. MDMA transiently alters biogenic amines and metabolites in mouse brain and heart. Pharmacol. Biochem. Behav., 1 Oct 1989, 34 (2), 223–227. 477 kB. https://doi.org/10.1016/0091-3057(89)90303-1

Johnson, MP; Nichols, DE. Neurotoxic effects of the alpha-ethyl homologue of MDMA following subacute administration. Pharmacol. Biochem. Behav., 1 May 1989, 33 (1), 105–108. 399 kB. https://doi.org/10.1016/0091-3057(89)90437-1

Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 23 Jul 1991, 200 (1), 9–16. 1.1 MB. https://doi.org/10.1016/0014-2999(91)90659-E

Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 23 Jul 1991, 200 (1), 53–58. 714 kB. https://doi.org/10.1016/0014-2999(91)90664-C

Johnson, MP; Huang, X; Nichols, DE. Serotonin neurotoxicity in rats after combined treatment with a dopaminergic agent followed by a nonneurotoxic 3,4-methylenedioxymethamphetamine (MDMA) analogue. Pharmacol. Biochem. Behav., 1 Dec 1991, 40 (4), 915–922. 845 kB. https://doi.org/10.1016/0091-3057(91)90106-C

Steele, TD; Brewster, WK; Johnson, MP; Nichols, DE; Yim, GKW. Assessment of the role of α-methylepinine in the neurotoxicity of MDMA. Pharmacol. Biochem. Behav., 1 Feb 1991, 38 (2), 345–351. 723 kB. https://doi.org/10.1016/0091-3057(91)90289-E

Huang, X; Nichols, DE. 5-HT2 receptor-mediated potentiation of dopamine synthesis and central serotonergic deficits. Eur. J. Pharmacol., 20 Jul 1993, 238 (2–3), 291–296. 553 kB. https://doi.org/10.1016/0014-2999(93)90859-G

Marona-Lewicka, D; Rhee, G; Sprague, JE; Nichols, DE. Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol. Biochem. Behav., 1 Jan 1996, 53 (1), 99–105. 1.0 MB. https://doi.org/10.1016/0091-3057(95)00205-7

Falk, EM; Cook, VJ; Nichols, DE; Sprague, JE. An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol. Biochem. Behav., 1 Jun 2002, 72 (3), 617–622. 120 kB. https://doi.org/10.1016/S0091-3057(02)00728-1

Callaghan, PD. Comparative neuropharmacology of the substituted amphetamines, p-methoxyamphatamine (PMA) & 3,4-methylenedioxymethamphetamine (MDMA). Ph. D. Thesis, University of Adelaide, Adelaide, Australia, 1 Aug 2008. 1.6 MB.

Kalant, H. The pharmacology and toxicology of “Ecstasy” (MDMA) and related drugs. Can. Med. Assoc. J., 1 Jan 2001, 165 (7), 917–928. 253 kB.

Green, AR; Mechan, AO; Elliott, JM; O’Shea, E; Colado, MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). Pharmacol. Rev., 1 Jan 2003, 55 (3), 463–508. 544 kB. https://doi.org/10.1124/pr.55.3.3

Capela, JP; Macedo, C; Branco, PS; Ferreira, LM; Lobo, AM; Fernandes, E; Remião, F; Bastos, ML; Dirnagl, U; Meisel, A; Carvalho, FG. Neurotoxicity mechanisms of thioether Ecstasy metabolites. Neuroscience, 1 Jan 2007, 146, 1743–1757. 995 kB. https://doi.org/10.1016/j.neuroscience.2007.03.028

Shulgin, AT. MDMA isomers. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 27 Aug 2001.

Sessa, B; Nutt, DJ. MDMA, politics and medical research: Have we thrown the baby out with the bathwater? J. Psychopharmacol., 1 Nov 2007, 21 (8), 787–791. 178 kB. https://doi.org/10.1177/0269881107084738

Benzenhõfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. https://doi.org/10.1111/j.1360-0443.2010.02948.x

Pentney, AR. An exploration of the history and controversies surrounding MDMA and MDA. J. Psychoactive Drugs, 1 Jul 2001, 33 (3), 213–221. 871 kB. https://doi.org/10.1080/02791072.2001.10400568

Passie, T; Hartmann, U; Schneider, U; Emrich, HM; Krüger, THC. Ecstasy (MDMA) mimics the post-orgasmic state: Impairment of sexual drive and function during acute MDMA-effects may be due to increased prolactin secretion. Med. Hypotheses, 2005, 64 (5), 899–903. 110 kB. https://doi.org/10.1016/j.mehy.2004.11.044

Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. https://doi.org/10.1016/S0304-3940(02)00823-6

Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. https://doi.org/10.1016/0091-3057(88)90001-9

Benzenhõfer, U; Passie, T. Zur Frühgeschichte von “Ecstasy”. Nervenarzt, 2006, 77 (1), 95–96, 98–99. 533 kB. https://doi.org/10.1007/s00115-005-2001-y

Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.

Pilgrim, JL; Gerostamoulos, D; Woodford, N; Drummer, OH. Serotonin toxicity involving MDMA (ecstasy) and moclobemide. Forensic Sci. Int., 10 Feb 2012, 215 (1–3), 184–188. 189 kB. https://doi.org/10.1016/j.forsciint.2011.04.008

Oberlender, R; Nichols, DE. (+)-N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxymethamphetamine-like behavioral activity. J. Pharmacol. Exp. Ther., 1 Dec 1990, 255 (3), 1098–1106. 1.9 MB.

Capela, JP; Carmo, H; Remião, F; Bastos, ML; Meisel, A; Carvalho, FG. Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: An overview. Mol. Neurobiol., 1 Jun 2009, 39 (3), 210–271. 1.9 MB. https://doi.org/10.1007/s12035-009-8064-1

Brunt, TM; Poortman, A; Niesink, RJM; van den Brink, W. Instability of the ecstasy market and a new kid on the block: mephedrone. J. Psychopharmacol., 1 Nov 2011, 25 (11), 1543–1547. 238 kB. https://doi.org/10.1177/0269881110378370

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Armenian, P; Mamantov, TM; Tsutaoka, BT; Gerona, RRL; Silman, EF; Wu, AHB; Olson, KR. Multiple MDMA (ecstasy) overdoses at a rave event: A case series. J. Intensive Care, 1 Jul 2013, 28 (4), 252-258. 130 kB. https://doi.org/10.1177/0885066612445982

Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 2012, 9 (1), 27–32. 496 kB.

Fenderson5555. Mechanisms in MDMA synthesis. , 5 Jan 2011. . Fenderson5555 4.4 MB.

Maher, HM; Awad, T; DeRuiter, J; Clark, CR. GC–IRD methods for the identification of some tertiary amines related to MDMA. Forensic Sci. Int., 15 Jun 2010, 199 (1–3), 18–28. 877 kB. https://doi.org/10.1016/j.forsciint.2010.02.022

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003

Hayden Griffin, O. Is the government keeping the peace or acting like our parents? Rationales for the legal prohibitions of GHB and MDMA. J. Drug Issues, 1 Jul 2012, 42 (3), 247–262. 703 kB. https://doi.org/10.1177/0022042612456014

Mohamed, WMY; Hamida, SB; Cassel, J; de Vasconcelos, AP; Jones, BC. MDMA: Interactions with other psychoactive drugs. Pharmacol. Biochem. Behav., 1 Oct 2011, 99 (4), 759–774. 396 kB. https://doi.org/10.1016/j.pbb.2011.06.032

Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 2002, 1634–1638. 115 kB. https://doi.org/10.1039/b200607c

Moonzwe, LS; Schensul, JJ; Kostick, KM. The role of MDMA (Ecstasy) in coping with negative life situations among urban young adults. J. Psychoactive Drugs, 29 Aug 2011, 43 (3), 199–210. 137 kB. https://doi.org/10.1080/02791072.2011.605671

Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. https://doi.org/10.1124/jpet.106.103622

Makino, Y; Kurobane, S; Miyasaka, K. Profiling of ecstasy tablets seized in Japan. Microgram J., 1 Jul 2003, 1 (3–4), 169–176. 614 kB.

Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Mumane, KS. Neuropharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers. Ph. D. Thesis, Emory University, Atlanta, GA, USA, 2010. 4.3 MB.

Gandy, MN; Mclldowie, M; Lewis, K; Wasik, AM; Salomonczyk, D; Wagg, K; Millar, ZA; Tindiglia, D; Huot, P; Johnston, T; Thiele, S; Nguyen, B; Barnes, NM; Brotchie, JM; Martin-Iverson, MT. Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt’s lymphoma cytotoxicity. Med. Chem. Comm., 2010, 1 (4), 287–293. 177 kB. https://doi.org/10.1039/c0md00108b

Oberlender, R; Nichols, DE. Drug discrimination studies with MDMA and amphetamine. Psychopharmacology, 1 May 1988, 95 (1), 71–26. 674 kB. https://doi.org/10.1007/BF00212770

Bailey, K; By, AW; Legault, D; Verner, D. Identification of the N-methylated analogs of the hallucinogenic amphetamines and some isomers. J. Assoc. Off. Anal. Chem., 1975, 58 (1), 62–69. 2.0 MB.

Stojanovska, N; Fu, S; Tahtouh, M; Kelly, T; Beavis, A; Kirkbride, KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int., 10 Jan 2013, 224 (1–3), 8–26. 813 kB. https://doi.org/10.1016/j.forsciint.2012.10.040

Eshleman, AJ; Wolfrum, KM; Hatfield, MG; Johnson, RA; Murphy, KV; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol., 15 Jun 2013, 85 (12), 1803–1815. 2.2 MB. https://doi.org/10.1016/j.bcp.2013.04.004

Dybdal-Hargreaves, NF; Holder, ND; Ottoson, PE; Sweeney, MD; Williams, T. Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur. J. Pharmacol., 15 Aug 2013, 714 (1–3), 32–40. 837 kB. https://doi.org/10.1016/j.ejphar.2013.05.024

De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 697 kB. https://doi.org/10.1016/j.lfs.2013.10.029

Angoa-Pérez, M; Kane, MJ; Herrera-Mundo, N; Francescutti, DM; Kuhn, DM. Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci., 27 Feb 2014, 97 (1), 31–36. 888 kB. https://doi.org/10.1016/j.lfs.2013.07.015

Halpin, LE; Collins, SA; Yamamoto, BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci., 27 Feb 2014, 97 (1), 37–44. 507 kB. https://doi.org/10.1016/j.lfs.2013.07.014

Fromberg, E. Ecstasy: the Dutch story. J. Subst. Use, 1998, 3 (2), 89–94. 709 kB. https://doi.org/10.3109/14659899809053479

Grob, CS. Deconstructing ecstasy: The politics of MDMA research. Addict. Res. Theory, 2000, 8 (6), 549–588. 2.4 MB. https://doi.org/10.3109/16066350008998989

Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. https://doi.org/10.1016/S0041-008X(73)80016-X

Ziporyn, T. A growing industry and menace: makeshift laboratory’s designer drugs. JAMA, 12 Dec 1986, 256 (22), 3061–3063. 486 kB. https://doi.org/10.1001/jama.1986.03380220011003

Passie, T; Benzenhöfer, U. The history of MDMA as an underground drug in the United States, 1960–1979. J. Psychoactive Drugs, 14 Mar 2016, 48 (2), 67–75. 1.0 MB. https://doi.org/10.1080/02791072.2015.1128580

Bernschneider-Reif, S; Öxler, F; Freudenmann, RW. The origin of MDMA (“Ecstasy”) – Separating the facts from the myth. Pharmazie, 1 Nov 2006, 61 (11), 966–972. 315 kB.

Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB.

Parrott, AC. The potential dangers of using MDMA for psychotherapy. J. Psychoactive Drugs, 1 Jan 2014, 46 (1), 37–43. 123 kB. https://doi.org/10.1080/02791072.2014.873690

Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., Aug 1975, 47 (9), 841A–844a. 1.6 MB. https://doi.org/10.1021/ac60359a050

Siegel, RK. MDMA: Nonmedical use and intoxication. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 349–354. 6.0 MB. https://doi.org/10.1080/02791072.1986.10472368

Renfroe, CL. MDMA on the Street: Analysis Anonymous®. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 363–369. 3.7 MB. https://doi.org/10.1080/02791072.1986.10472371

Doblin, R; Greer, G; Holland, J; Jerome, L; Mithoefer, MC; Sessa, B. A reconsideration and response to Parrott AC (2013) “Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research”. Hum. Psychopharmacol. Clin. Exp., 1 Mar 2014, 29 (2), 105–108. 72 kB. https://doi.org/10.1002/hup.2389

Parrott, AC. MDMA is certainly damaging after 25 years of empirical research: a reply and refutation of Doblin et al. (2014). Hum. Psychopharmacol. Clin. Exp., 1 Mar 2014, 29 (2), 109–119. 144 kB. https://doi.org/10.1002/hup.2390

Kapitány-Fövény, M; Kertész, M; Winstock, A; Deluca, P; Corazza, O; Farkas, J; Zacher, G; Urbán, R; Demetrovics, Z. Substitutional potential of mephedrone: an analysis of the subjective effects. Hum. Psychopharmacol. Clin. Exp., 1 Jul 2013, 28 (4), 308–316. 141 kB. https://doi.org/10.1002/hup.2297

Parrott, AC. Human psychobiology of MDMA or “Ecstasy”: an overview of 25 years of empirical research. Hum. Psychopharmacol. Clin. Exp., 1 Jul 2013, 28 (4), 289–307. 363 kB. https://doi.org/10.1002/hup.2318

Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Adv. Pharmacol., 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9

Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Analysis, 31 Aug 2017, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292

Ray, TS. Constructing the ecstasy of MDMA from its component mental organs: Proposing the primer/probe method. Med. Hypotheses, 1 Feb 2016, 87 48–60. 455 kB. https://doi.org/10.1016/j.mehy.2015.12.018

Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, 11 Feb 2011, 50, 63-82. 627 kB. Retrieved from http://www.customs.go.jp/ccl_search/e_info_search/drugs/r_50_08_e.pdf

EMCDDA. New drugs in Europe, 2016, European Monitoring Centre for Drugs and Drug Addiction, 1 May 2017. 489 kB.

EMCDDA. New drugs in Europe, 2015, European Monitoring Centre for Drugs and Drug Addiction, 1 May 2016. 1.0 MB.

Mounteney, J; Griffiths, P; Bo, A; Cunningham, A; Matias, J; Pirona, A. Nine reasons why ecstasy is not quite what it used to be. Int. J. Drug Policy, 1 Jan 2018, 51 36–41. 334 kB. https://doi.org/10.1016/j.drugpo.2017.09.016

Nugteren-van Lonkhuyzen, JJ; van Riel, AJHP; Brunt, TM; Hondebrink, L. Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans. Drug Alcohol Depend., 1 Dec 2015, 157 18–27. 483 kB. https://doi.org/10.1016/j.drugalcdep.2015.10.011 #MDMA

EMCDDA. New drugs in Europe, 2011, European Monitoring Centre for Drugs and Drug Addiction, 1 Apr 2012. 401 kB.

Clark, CR. Synthesis and analytical profiles for regioisomeric and isobaric amines related to MDMA, MDEA and MBDB: Differentiation of drug and non-drug substances of mass spectral equivalence, US DOJ, 1 Oct 2011. 3.9 MB. #1.1-3; 3.2-7; 4.2-7; 7.2-9; 9.1

Morris, H. A clandestine chemist’s tale. Hamilton’s Pharmacopeia, 1 Jan 2018. S2 E05, 44:05. Vice 133.4 MB.

Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476

Wasik, AM; Gandy, MN; McIldowie, M; Holder, MJ; Chamba, A; Challa, A; Lewis, KD; Young, SP; Scheel-Toellner, D; Dyer, MJ; Barnes, NM; Piggott, MJ; Gordon, J. Enhancing the anti-lymphoma potential of 3,4-methylenedioxymethamphetamine (‘ecstasy’) through iterative chemical redesign: mechanisms and pathways to cell death. Invest. New Drugs, 1 Aug 2012, 30 (4), 1471-1483. 575 kB. https://doi.org/10.1007/s10637-011-9730-5

Aalberg, L; DeRuiter, J; Noggle, FT; Sippola, E; Clark, CR. Chromatographic and mass spectral methods of identification for the side-chain and ring regioisomers of methylenedioxymethamphetamine. J. Chromatogr. Sci., 1 Aug 2000, 38 (8), 329–336. 861 kB. https://doi.org/10.1093/chromsci/38.8.329 #3

Dal Cason, TA; Meyers, JA; Lankin, DC. Proton and carbon-13 NMR assignments of 3,4-methylenedioxyamphetamine (MDA) and some analogues of MDA. Forensic Sci. Int., 18 Apr 1997, 86 (1–2), 15-24. 931 kB. https://doi.org/10.1016/S0379-0738(97)02102-6

Burns, DT; Lewis, RJ; Stevenson, P. Determination of 3,4-methylenedioxyamphetamine analogues (“ecstasy”) by proton nuclear magnetic resonance spectrometry. Anal. Chim. Acta., 10 Mar 1997, 339 (3), 259-263. 405 kB. https://doi.org/10.1016/S0003-2670(96)00485-0

Shulgin, AT. Letter to the DEA re scheduling of MDMA. 29 Aug 1984. 170 kB. #MDMA

Hermle, L; Kraehenmann, R. Experimental psychosis research and schizophrenia—Similarities and dissimilarities in psychopathology. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 313-332. 446 kB. https://doi.org/10.1007/7854_2016_460

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Halpern, JH; Lerner, AG; Passie, T. A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 333-360. 579 kB. https://doi.org/10.1007/7854_2016_457

Barrett, FS; Griffiths, RR. Classic hallucinogens and mystical experiences: Phenomenology and neural correlates. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 137-158. 848 kB. https://doi.org/10.1007/7854_2017_474

Brandt, SD; Kavanagh, PV. Addressing the challenges in forensic drug chemistry. Drug Test. Analysis, 1 Jan 2017, 9 (3), 342-346. 120 kB. https://doi.org/10.1002/dta.2169

Hofer, KE; Faber, K; Müller, DM; Hauffe, T; Wenger, U; Kupferschmidt, H; Rauber-Lüthy, C. Acute toxicity associated with the recreational use of the novel psychoactive benzofuran N-methyl-5-(2 aminopropyl)benzofuran. Ann. Emer. Med., 1 Jan 2017, 69 (1), 79-82. 284 kB. https://doi.org/10.1016/j.annemergmed.2016.03.042

Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)

Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 2016, 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001

King, LA. New phenethylamines in Europe. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570

Burns, L; Roxburgh, A; Bruno, R; Van Buskirk, J. Monitoring drug markets in the Internet age and the evolution of drug monitoring systems in Australia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 840-845. 113 kB. https://doi.org/10.1002/dta.1613

Burns, L; Roxburgh, A; Matthews, A; Bruno, R; Lenton, S; Van Buskirk, J. The rise of new psychoactive substance use in Australia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 846-849. 422 kB. https://doi.org/10.1002/dta.1626

Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610

Hudson, AL; Lalies, MD; Baker, GB; Wells, K; Aitchison, KJ. Ecstasy, legal highs and designer drug use: A Canadian perspective. Drug Science, Policy and Law, 1 Jan 2014, 1, 2050324513509190. 230 kB. https://doi.org/10.1177/2050324513509190

Wilkins, C; Sweetsur, P. The impact of the prohibition of benzylpiperazine (BZP) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand. Drug Alcohol Depend., 1 Jan 2013, 127 (1-3), 72-80. 521 kB. https://doi.org/10.1016/j.drugalcdep.2012.06.014

Neudõrffer, A; Mueller, M; Martinez, C; Mechan, A; McCann, U; Ricaurte, GA; Largeron, M. Synthesis and neurotoxicity profile of 2,4,5-trihydroxymethamphetamine and its 6-(N-acetylcystein-S-yl) conjugate. Chem. Res. Toxicol., 2011, 24 (6), 968–278. 4.8 MB. https://doi.org/10.1021/tx2001459

Cassels, BK; Sáez-Briones, P. DARK classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 8 Jun 2018, n/a. 648 kB. https://doi.org/10.1021/acschemneuro.8b00215

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Collins, M; Heagney, A; Cordaro, F; Odgers, D; Tarrant, G; Stewart, S. Methyl 3-[3′,4′-(methylenedioxy)phenyl]-2-methyl glycidate: an ecstasy precursor seized in Sydney, Australia. J. Forensic Sci., 1 Jul 2007, 52 (4), 898–903. 714 kB. https://doi.org/10.1111/j.1556-4029.2007.00480.x

Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1 Jan 1994; pp 3–41. 6.9 MB. #14

Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1989; pp 1-29. 282 kB. #1

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB.

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #23a

Simmler, LD; Liechti, ME. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. In Handbook of Experimental Pharmacology; , Springer Berlin Heidelberg, 1 Jan 2018; . 298 kB. https://doi.org/10.1007/164_2018_113

Nagai, F; Nonaka, R; Kamimura, KSH. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur. J. Pharmacol., 22 Mar 2007, 559 (2), 132–137. 399 kB. https://doi.org/10.1016/j.ejphar.2006.11.075 #MDMA

Milhazes, N; Cunha-Oliveira, T; Martins, P; Garrido, J; Oliveira, C; Rego, AC; Borges, F. Synthesis and cytotoxic profile of 3,4-methylenedioxymethamphetamine (“Ecstasy”) and its metabolites on undifferentiated PC12 cells: A putative structure-toxicity relationship. Chem. Res. Toxicol., 2006, 19 (10), 1294–2304. 204 kB. https://doi.org/10.1021/tx060123i #16

Gouzoulis-Mayfrank, E; Daumann, J. Neurotoxicity of methylenedioxyamphetamines (MDMA; ecstasy) in humans: how strong is the evidence for persistent brain damage? Addiction, 1 Mar 2006, 101 (3), 348–261. 139 kB. https://doi.org/10.1111/j.1360-0443.2006.01314.x #MDMA

Broadley, KJ. The vascular effects of trace amines and amphetamines. Pharmacol. Ther., 1 Mar 2010, 125 (3), 363–375. 1.1 MB. https://doi.org/10.1016/j.pharmthera.2009.11.005 #3,4-methylenedioxymethamphetamin

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #MDMA

Beck, J. The public health implications of MDMA use. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 77–103. 726 kB. https://doi.org/10.1007/978-1-4613-1485-1_6 #MDMA

Dowling, GP. Human deaths and toxic reactions attributed to MDMA and MDEA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 63–75. 379 kB. https://doi.org/10.1007/978-1-4613-1485-1_5 #MDMA

Peroutka, SJ. Recreational use of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 53–62. 577 kB. https://doi.org/10.1007/978-1-4613-1485-1_4 #MDMA

Bakalar, JB; Grinspoon, L. Testing psychotherapies and drug therapies: The case of psychedelic drugs. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 37–52. 419 kB. https://doi.org/10.1007/978-1-4613-1485-1_3 #MDMA

Greer, GR; Tolbert, R. The therapeutic use of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 21–35. 451 kB. https://doi.org/10.1007/978-1-4613-1485-1_2 #MDMA

Shulgin, AT. History of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 1–20. 511 kB. https://doi.org/10.1007/978-1-4613-1485-1_1 #MDMA

Gibb, JW; Stone, D; Johnson, M; Hanson, GR. Neurochemical effects of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, SJ, Ed., Springer US, 1 Jan 1990; pp 133–150. 659 kB. https://doi.org/10.1007/978-1-4613-1485-1_8 #MDMA

Monte, AP; Marona-Lewicka, D; Cozzi, NV; Nichols, DE. Synthesis and pharmacological examination of benzofuran, indan, and tetralin analogues of 3,4-(methylenedioxy)amphetamine. J. Med. Chem., 1 Nov 1993, 36 (23), 3700–3706. 1.0 MB. https://doi.org/10.1021/jm00075a027 #1b MS,NMR

Baudot, P; Dresch, M; Dzierzynski, M; Vicherat, A. Identification de dérivés de la 3,4-méthylènedioxyamphétamine par couplage CPG-SM à piégeage d’ions et par RMN. Ann. Fals. Exp. Chim., 1 Oct 1996, 89 (937), 255–272. 912 kB. #MDMA GC,MS,NMR

Borth, S; Hänsel, W; Rösner, P; Junge, T. Synthesis of 2,3- and 3,4-methylenedioxyphenylalkylamines and their regioisomeric differentiation by mass spectral analysis using GC-MS-MS. Forensic Sci. Int., 11 Dec 2000, 114 (3), 139–153. 471 kB. https://doi.org/10.1016/S0379-0738(00)00296-6 #2b

Bishop, SC; McCord, BR; Gratz, SR; Loeliger, JR; Witkowski, MR. Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector. J. Forensic Sci., 1 Mar 2005, 50 (2), 1–10. 597 kB. https://doi.org/10.1520/JFS2004239 #MDMA LC,MS,UV,other

Lee, GSH; Craig, DC; Kannangara, GSK; Dawson, M; Conn, C; Robertson, J; Wilson, MA. Analysis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) in “Ecstasy” tablets by 13C solid state nuclear magnetic resonance (NMR) spectroscopy. J. Forensic Sci., 1 Jul 1999, 44 (4), 761–771. 484 kB. https://doi.org/10.1520/JFS14550J #MDMA NMR,other

Baudot, P; Vicherat, A; Viriot, M; Carré, M. Identification of N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB), an homologue derivative of “ecstasy”. Analusis, 1 Jul 1999, 27 (6), 523–532. 107 kB. https://doi.org/10.1051/analusis:1999129 #MDMA GC,LC,MS,NMR

Vollenweider, FX; Geyer, M; Greer, G. Acute psychological and neurophysiological effects of MDMA in humans. Heffter Rev., 2001, 2, 53–63. 338 kB.

Marona-Lewicka, D; Nichols, DE. Drug discrimination studies of the interoceptive cues produced by selective serotonin uptake inhibitors and selective serotonin releasing agents. Psychopharmacology, 1 Jul 1998, 138 (1), 67–75. 129 kB. https://doi.org/10.1007/s002130050646 #MDMA

Kanthasamy, A; Sprague, JE; Shotwell, JR; Nichols, DE. Unilateral infusion of a dopamine transporter antisense into the substantia nigra protects against MDMA-induced serotonergic deficits in the ipsilateral striatum. Neuroscience, 1 Nov 2002, 114 (4), 917–924. 230 kB. https://doi.org/10.1016/S0306-4522(02)00368-8 #MDMA

4-MeOMC · Methedrone
2-Me-MDA · 2-Methyl-MDA
5-Me-MDA · 5-Methyl-MDA
6-Me-MDA · 6-Methyl-MDA
p1-139: The Pseunut Coctail
p1-186: MDMA
p2-207: MDMA
p2-210: MDMA
p2-230: MDMA
p2-231: MDMA
p2-232: MDMA
p2-233: MDMA: Saturation experiments
p2-234: MDMA: Saturation experiments
p2-235: MDMA
p2-241: S-MDA
p2-242: MDMA
p2-243: MDMA
p2-261: MDMA
p2-271: MDMA
p2-275: MDMA: Report of results
p2-275.2: MDMA: Report of results
p2-284: MDMA: Report of experience
p2-289: MDMA: Report of experience
p2-290: MDMA
p2-295: MDMA: Report of experience
p2-299: MDMA: Report of experience
p2-304: MDMA: Report of experience
p2-306: MDMA: Report of experiment
p2-307: MDMA: Report of experiment
p2-311: MDMA: Report of experience
p2-314: MDMA: Report of experience
p2-320: MDMA: Report of experience
p3-328: MDMA
p3-331: MDMA
p3-333: MDMA
p3-336: MDPR; LSD; DOB; Meth; MDMA
p3-340: MDMA
p3-350: MDMA
p3-360: MDMA
p3-362: MDMA
p3-366: LSD; MDMA; Methedrine
p3-374: MDMA
p3-375: MDMA
p3-375.2: MDMA
p3-376: LSD; MDE; MDMA
p3-378: MDMA
p3-379: MDMA
p3-382: MDMA
p3-384: MDMA
p3-385: MDMA
p3-386: MDMA
p3-387: LSD; MDMA
p3-388: MDMA
p3-391: MDMA
p3-392: MDMA
p3-393: MDMA
p3-398: LSD; MDMA
p3-399: LSD; MDMA
p3-403: MDMA
p3-404: MDMA
p3-405: MDMA; LSD
p3-408: MDMA
p3-410: MDMA
p3-414: MDMA
p3-415: MDMA
p3-420: MDMA
p3-421: MDMA
p3-423: MDMA
p3-425: MDMA
p3-427: MDMA
p3-435: MDMA
p3-441: MDMA
p3-442: MDMA
p3-444: MDMA
p4-456: MDMA
p4-457: MDMA
p4-458: MDMA
p4-463: MDMA
p4-467: MDMA
p4-467.2: MDMA
p4-469: 2C-E; DOI: J; LSD; MDMA; METHYL-MMDA-2
p4-473: MDMA
p4-488: MDMA
p4-492: MDMA
p4-493: MDMA
p4-494: MDMA
p4-496: MDMA
p4-503: MDMA
p4-504: MDMA
p4-505: MDMA
p4-506: MDMA
p4-507: MDMA
p4-510: MDMA
p4-520: MDMA
p4-568: MDMA
p4-570: MDMA
p4-572: MDMA
p4-583: MDMA
p4-584: MDMA
p4-594: MDMA
p4-600: LSD; MDMA
p4-601: MDMA
p4-608: MDMA
p4-609: MDMA
p4-610: MDMA
p4-611: MDMA
p4-612: MDMA
p4-613: MDMA
p4-614: 2C-B; MDMA
p4-621: MDMA
p4-622: LSD; MDMA
p4-623: LSD; MDMA
p4-624: LSD; MDMA
p4-629: MDMA
p4-630: MDMA
p4-632: 2C-B; J; LSD; MDMA
p4-635: MDMA
p4-636: MDMA
p4-637: MDMA
p4-638: MDMA
p4-640: MDMA
p4-641: MDMA
p4-642: MDMA
p4-643: MDMA
p4-653: MDMA
p4-654: MDMA
p4-655: MDMA
p4-656: MDMA
p4-657: LSD; MDMA
p4-658: LSD; MDMA
p4-659: LSD; MDMA
p4-660: LSD; MDMA
p4-663: MDMA
p4-664: MDMA
15 October 2018 · Creative Commons BY-NC-SA ·