Exploring DOM. To explore a different substance…

Names:
DOM · STP · 4-Methyl-2,5-dimethoxyamphetamine · 2,5-Dimethoxy-4-methylamphetamine
IUPAC name:
1-(2,5-Dimethoxy-4-methylphenyl)propan-2-amine
ID: 68 · Formula: C12H19NO2 · Molecular weight: 209.285
InChI: InChI=1S/C12H19NO2/c1-8-5-12(15-4)10(6-9(2)13)7-11(8)14-3/h5,7,9H,6,13H2,1-4H3

Jackson, B; Reed, A. Another abusable amphetamine. JAMA, 2 Feb 1970, 211 (5), 830–830. 186 kB. http://dx.doi.org/10.1001/jama.1970.03170050064024

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. http://dx.doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. http://dx.doi.org/10.1002/cmdc.200800133

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. http://dx.doi.org/10.1002/dta.413

Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Current Topics in Behavioral Neurosciences; , 2016; pp 1–29. 826 kB. http://dx.doi.org/10.1007/7854_2016_64

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Hollister, LE; Macnicol, MF; Gillespie, HK. An hallucinogenic amphetamine analog (DOM) in man. Psychopharmacology, 1 Jan 1969, 14 (1), 62–73. 667 kB. http://dx.doi.org/10.1007/BF00401535

Fantegrossi, WE; Harrington, AW; Eckler, JR; Arshad, S; Rabin, RA; Winter, JC; Coop, A; Rice, KC; Woods, JH. Hallucinogen-like actions of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in mice and rats. Psychopharmacology, 1 Sep 2005, 181 (3), 496–503. 182 kB. http://dx.doi.org/10.1007/s00213-005-0009-4

Glennon, RA; Young, R; Jacyno, JM. Indolealkylamine and phenalkylamine hallucinogens: Effect of α-methyl and N-methyl substituents on behavioral activity. Biochem. Pharmacol., 1 Apr 1983, 32 (7), 1267–1273. 591 kB. http://dx.doi.org/10.1016/0006-2952(83)90281-2

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. http://dx.doi.org/10.1016/0014-2999(81)90106-0

Shannon, M; Battaglia, G; Glennon, RA; Titeler, M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur. J. Pharmacol., 15 Jun 1984, 102 (1), 23–29. 461 kB. http://dx.doi.org/10.1016/0014-2999(84)90333-9

Rasmussen, K; Glennon, RA; Aghajanian, GK. Phenethylamine hallucinogens in the locus coeruleus: potency of action correlates with rank order of 5-HT2 binding affinity. Eur. J. Pharmacol., 2 Dec 1986, 132 (1), 79–82. 267 kB. http://dx.doi.org/10.1016/0014-2999(86)90014-2

Lyon, RA; Titeler, M; Seggel, MR; Glennon, RA. Indolealkylamine analogs share 5-HT2 binding characteristics with phenylalkylamine hallucinogens. Eur. J. Pharmacol., 19 Jan 1988, 145 (3), 291–297. 533 kB. http://dx.doi.org/10.1016/0014-2999(88)90432-3

Dyer, DC; Nichols, DE; Rusterholz, DB; Barfknecht, CF. Comparative effects of stereoisomers of psychotomimetic phenylisopropylamines. Life Sci., 1 Oct 1973, 13 (7), 885–896. 398 kB. http://dx.doi.org/10.1016/0024-3205(73)90079-9

Nichols, DE; Shulgin, AT; Dyer, DC. Directional lipophilic character in a series of psychotomimetic phenethylamine derivatives. Life Sci., 1 Jan 1977, 21 (4), 569–576. 320 kB. http://dx.doi.org/10.1016/0024-3205(77)90099-6

Kier, LB; Glennon, RA. Psychotomimetic phenalkylamines as serotonin agonists: An SAR analysis. Life Sci., 8 May 1978, 22 (18), 1589–1593. 238 kB. http://dx.doi.org/10.1016/0024-3205(78)90053-X

Nichols, DE; Pfister, WR; Yim, GK. LSD and phenethylamine hallucinogens: New structural analogy and implications for receptor geometry. Life Sci., 1 Jan 1978, 22 (24), 2165–2170. 323 kB. http://dx.doi.org/10.1016/0024-3205(78)90567-2

Glennon, RA; Titeler, M; McKenney, JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 17 Dec 1984, 35 (25), 2505–2511. 332 kB. http://dx.doi.org/10.1016/0024-3205(84)90436-3

White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. http://dx.doi.org/10.1016/0027-5107(77)90210-X

Glennon, RA; Young, R; Rosecrans, JA. A comparison of the behavioral effects of DOM homologs. Pharmacol. Biochem. Behav., 1 Apr 1982, 16 (4), 557–559. 256 kB. http://dx.doi.org/10.1016/0091-3057(82)90414-2

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. http://dx.doi.org/10.1016/0091-3057(91)90005-M

Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Advances in Pharmacology, 2014, 69, 581–620. 564 kB. http://dx.doi.org/10.1016/B978-0-12-420118-7.00015-9

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. http://dx.doi.org/10.1016/S0006-2952(97)00405-X

Winter, J; Filipink, R; Timineri, D; Helsley, S; Rabin, R. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol. Biochem. Behav., 1 Jan 2000, 65 (1), 75–82. 157 kB. http://dx.doi.org/10.1016/S0091-3057(99)00178-1

Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. http://dx.doi.org/10.1016/S0376-8716(99)00148-9

Chambers, JJ; Kurrasch-Orbaugh, DM; Nichols, DE. Translocation of the 5-alkoxy substituent of 2,5-dialkoxyarylalkylamines to the 6-position: Effects on 5-HT2A/2C receptor affinity. Bioorg. Med. Chem. Lett., 1 Jan 2002, 12 (15), 1997–1999. 100 kB. http://dx.doi.org/10.1016/S0960-894X(02)00306-2

Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. http://dx.doi.org/10.1016/S0968-0896(03)00437-1

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. http://dx.doi.org/10.1016/j.bmc.2003.10.027

Parker, MA; Kurrasch, DM; Nichols, DE. The role of lipophilicity in determining binding affinity and functional activity for 5-HT2A receptor ligands. Bioorg. Med. Chem., 1 Jan 2008, 16 (8), 4661–4669. 296 kB. http://dx.doi.org/10.1016/j.bmc.2008.02.033

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. http://dx.doi.org/10.1016/j.neuropharm.2011.01.017

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. http://dx.doi.org/10.1016/j.pbb.2007.06.001

Glennon, RA; Seggel, MR. Interaction of phenylisopropylamines with central 5-HT2 receptors. Analysis by quantitative structure-activity relationships. In Probing Bioactive Mechanisms; ACS Symposium Series; Magee, PS; Henry, DR; Block, JH, Eds., American Chemical Society, Washington, DC, 14 Nov 1989; Vol. 413, pp 264–280. 4.4 MB. http://dx.doi.org/10.1021/bk-1989-0413.ch018

Oberlender, R; Ramachandran, PV; Johnson, MP; Huang, X; Nichols, DE. Effect of a chiral 4-alkyl substituent in hallucinogenic amphetamines. J. Med. Chem., 1 Jan 1995, 38 (18), 3593–3601. 1.3 MB. http://dx.doi.org/10.1021/jm00018a019

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. http://dx.doi.org/10.1021/jm00082a014

Nichols, DE; Snyder, SE; Oberlender, R; Johnson, MP; Huang, X. 2,3-Dihydrobenzofuran analogues of hallucinogenic phenethylamines. J. Med. Chem., 1 Jan 1991, 34 (1), 276–281. 833 kB. http://dx.doi.org/10.1021/jm00105a043

Kothari, PJ; Hathaway, BA; Nichols, DE; Yim, GKW. Synthesis and serotonin-like activity of 2-amino-5,8-dimethoxy-6-methyl-1,2-dihydronaphthalene. J. Med. Chem., 1 Jan 1981, 24 (7), 882–884. 464 kB. http://dx.doi.org/10.1021/jm00139a022

Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. http://dx.doi.org/10.1021/jm00144a009

Seggel, MR; Yousif, MY; Lyon, RA; Titeler, M; Roth, BL; Suba, EA; Glennon, RA. A structure-affinity study of the binding of 4-substituted analogues of 1-(2,5-dimethoxyphenyl)-2-aminopropane at 5-HT2 serotonin receptors. J. Med. Chem., 1 Mar 1990, 33 (3), 1032–1036. 807 kB. http://dx.doi.org/10.1021/jm00165a023

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. http://dx.doi.org/10.1021/jm00177a017

Weintraub, HJR; Nichols, DE; Makriyannis, A; Fesik, SW. Conformational energy differences between side chain alkylated analogues of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. J. Med. Chem., 1 Jan 1980, 23 (3), 339–341. 452 kB. http://dx.doi.org/10.1021/jm00177a030

McGraw, NP; Callery, PS; Castagnoli, N. In vitro stereoselective metabolism of the psychotomimetic amine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. An apparent enantiomeric interaction. J. Med. Chem., 1 Jan 1977, 20 (2), 185–189. 661 kB. http://dx.doi.org/10.1021/jm00212a001

Zweig, JS; Castagnoli, N. In vitro O-demethylation of the psychotomimetic amine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane. J. Med. Chem., 1 Mar 1977, 20 (3), 414–421. 1.2 MB. http://dx.doi.org/10.1021/jm00213a020

Standridge, RT; Howell, HG; Gylys, JA; Partyka, RA; Shulgin, AT. Phenylalkylamines with potential psychotherapeutic utility. 1. 2-Amino-1-(2,5-dimethoxy-4-methylphenyl)butane. J. Med. Chem., 1 Jan 1976, 19 (12), 1400 –1404. 730 kB. http://dx.doi.org/10.1021/jm00234a010

Shulgin, AT; Dyer, DC. Psychotomimetic phenylisopropylamines. 5. 4-Alkyl-2,5-dimethoxyphenylisopropylamines. J. Med. Chem., 1 Jan 1975, 18 (12), 1201–1204. 534 kB. http://dx.doi.org/10.1021/jm00246a006

Zweig, JS; Castagnoli, N. Chemical conversion of the psychotomimetic amine 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane to 5-hydroxy-2,6-dimethylindole. J. Med. Chem., 1 Jul 1974, 17 (7), 747–749. 438 kB. http://dx.doi.org/10.1021/jm00253a019

Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10), 1100–1111. 1.2 MB. http://dx.doi.org/10.1021/jm00256a016

Nichols, DE; Barfknecht, CF; Rusterholz, DB; Benington, F; Morin, RD. Asymmetric synthesis of psychotomimetic phenylisopropylamines. J. Med. Chem., 1 Jan 1973, 16 (5), 480–483. 515 kB. http://dx.doi.org/10.1021/jm00263a013

Ho, B; Tansey, LW. Analogs of amphetamine. 4. Synthesis of metabolites of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM). J. Med. Chem., 1 Feb 1971, 14 (2), 156–157. 316 kB. http://dx.doi.org/10.1021/jm00284a018

Ho, B; Estevez, V; Tansey, LW; Englert, LF; Creaven, PJ; McIsaac, WM. Analogs of amphetamine. 5. Excretory metabolites of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) in rats. J. Med. Chem., 1 Feb 1971, 14 (2), 158–160. 371 kB. http://dx.doi.org/10.1021/jm00284a019

Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. http://dx.doi.org/10.1021/jm00295a007

Ho, B; Tansey, LW; Balster, RL; An, R; McIsaac, WM; Harris, RT. Amphetamine analogs. II. Methylated phenethylamines. J. Med. Chem., 1 Jan 1970, 13 (1), 134–135. 278 kB. http://dx.doi.org/10.1021/jm00295a034

Jacob, JN; Nichols, DE. Isomeric cyclopropyl ring-methylated homologues of trans-2-(2,5-dimethoxy-4-methylphenyl)cyclopropylamine, an hallucinogen analogue. J. Med. Chem., 1 Jan 1982, 25 (5), 526–530. 732 kB. http://dx.doi.org/10.1021/jm00347a009

Glennon, RA; Titeler, M; Lyon, RA; Slusher, R. N,N-Di-n-propylserotonin: Binding at serotonin binding sites and a comparison with 8-hydroxy-2-(di-n-propylamino)tetralin. J. Med. Chem., 1 Jan 1988, 31 (4), 867–870. 600 kB. http://dx.doi.org/10.1021/jm00399a031

Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. http://dx.doi.org/10.1038/221537a0

Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. http://dx.doi.org/10.1038/sj.bjp.0704747

Meyers, FH; Rose, AJ; Smith, DE. Incidents involving the Haight-Ashbury population and some uncommonly used drugs. J. Psychedelic Drugs, 1 Apr 1968, 1 (2), 139–146. 842 kB. http://dx.doi.org/10.1080/02791072.1968.10524531

Smith, DE. The psychotomimetic amphetamines with special reference to DOM (STP) toxicity. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 37–41. 709 kB. http://dx.doi.org/10.1080/02791072.1969.10524413

Shulgin, AT. Profiles of psychedelic drugs. 5. STP. J. Psychedelic Drugs, 1 Apr 1977, 9 (2), 171–172. 755 kB. http://dx.doi.org/10.1080/02791072.1977.10472044

Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 305–313. 10.7 MB. http://dx.doi.org/10.1080/02791072.1986.10472362

Shulgin, AT. Stereospecific requirements for hallucinogenesis. J. Pharm. Pharmacol., 1 Jan 1973, 25 (3), 271–272. 226 kB. http://dx.doi.org/10.1111/j.2042-7158.1973.tb10642.x

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. http://dx.doi.org/10.1111/j.2042-7158.1985.tb03072.x

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. http://dx.doi.org/10.1124/jpet.106.117507

Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. http://dx.doi.org/10.1124/mol.107.039255

Snyder, SH; Faillace, L; Hollister, L. 2,5-Dimethoxy-4-methyl-amphetamine (STP): A new hallucinogenic drug. Science, 3 Nov 1967, 158 (3801), 669–670. 520 kB. http://dx.doi.org/10.1126/science.158.3801.669

Coutts, RT; Malicky, JL. The synthesis of four possible in vitro metabolites of the hallucinogen 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM). Can. J. Chem., 1 Feb 1974, 52 (3), 395–399. 299 kB. http://dx.doi.org/10.1139/v74-063

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. http://dx.doi.org/10.1371/journal.pone.0009019

By, A; Neville, GA; Shurvell, HF. Fourier transform infrared/raman differentiation and characterization of cis- and trans-2,5-dimethoxy-4,β-dimethyl-β′-nitrostyrenes: precursors to the street drug STP. J. Forensic Sci., 1 Mar 1992, 37 (2), 503–512. 387 kB. http://dx.doi.org/10.1520/JFS13258J

Barfknecht, CF; Caputo, JF; Tobin, MB; Dyer, DC; Standridge, RT; Howell, HG; Goodwin, WR; Partyka, RA; Gylys, JA; Cavanagh, RL. Congeners of DOM: Effect of distribution on the evaluation of pharmacologic data. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 16–26. 502 kB.

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 8–15. 457 kB.

Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1970; pp 21–41. 8.6 MB.

Snyder, SH; Weingartner, H; Faillace, LA. DOET (2,5-dimethoxy-4-ethylamphetamine) and DOM (STP) (2,5-dimethoxy-4-methylamphetamine), new psychotropic agents: Their effects in man. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1970; pp 247–264. 2.5 MB.

Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB.

Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.

Eckler, JR. Stimulus control by hallucinogens: SSRI interactions. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 20 Dec 2002. 2.9 MB.

Regina, MJ. Biochemical changes associated with serotonergic hallucinogens. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 1 Jun 2005. 3.4 MB.

Reissig, CJ. The 5-HT1A receptor and hallucinogens. Ph. D. Thesis, State University of New York, Buffalo, NY, USA, 7 Sep 2006. 943 kB.

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB.

Ewald, AH. The 2,5-Dimethoxyamphetamines—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 1 Jan 2008. 195 kB.

Worsham, JN. 5-HT3 receptor ligands and their effect on psychomotor stimulants. M. Sc. Thesis, Virginia Commonwealth University, Richmond, VA, USA, 1 May 2008. 956 kB.

BEATRICE
N-cPr-DOM
N-HO-DOM
N,N-Me-DOM
N-Et-DOM
N-cPM-DOM
ARIADNE
2C-D
α-Me-DOM · CHARMIAN
α-Carboxy-2C-D
α-Carboxy-DOM
β-Me-DOM
β,β-Me-DOM
β-HO-DOM
2-TOM
FLORENCE
2-DES-Me-DOM · 2-DM-DOM
2-BzO-DOM
535
2-Et-DOM
GANESHA
G-21
ALEPH
ALEPH-2
ALEPH-4
ALEPH-6
ALEPH-7
2,5-DMA
DOAM
DOB
DOBU
DOC
DOEF
DOET
DOI
DON
DOPR
MEM
MPM
TMA-2
DOF
DOIB
DOTB
DOSB
DONH · DOA
DOAA
Hydroxy-DOPR
DOIP
MIPM
MBM
MAM
DOHE
DOBZ
DOCPM
ALEPH-8
ALEPH-5
ALEPH-16
ALEPH-21
DOTFM
2328
DOYN
DOCN
DOPh3
2325
2329
2330
DOVI
DOAC
DOCA
DOOH
DOCONHP
DOCOE
DOCEB
DOCEP
DOOC
DONMM
DOFM
DOHM
DOHP
DONO
DOEH
M(2OP)M
M(3OP)M
MBZM
ALEPH-19
ALEPH-S-amyl
ALEPH-S-PhEt
ALEPH sulfone
DOTFE
MTFEM
MDFEM
MFEM
DOBM
DOMCl
DOCET
DOTFPR
DOHSM
DOMSM
DOMOM
DONCO
DONCOE
DONCOTFM
DOCNM
1016
IRIS
5-TOM
5-TOMSO · TOMSO
2,4-MMA · 5-H-DOM
5-DES-Me-DOM · 5-DM-DOM
5-Et-DOM
DMCPA
α-CP-2C-D
DOMAI · DOM-AI
DOMAT · DOM-AT
homo-DOM
DMMCPA
HO-DOMAI
DMMCPA
DMCBA
2C-E
2C-G
ψ-DOM
2,5-DMMA · METHYL-DMA
4C-DMA · 4C-H
4C-DMPEA
N-Me-2C-D
2C-D-2-EtO · 2CD-2ETO
2C-D-5-EtO · 2CD-5ETO
m-DOM · 5-DOM
o-DOM · 2-DOM
6-Me-2,4-DOM · Z-7.1
2,4-DMMA
ψ-2C-E
4-Propoxynorephedrine
homo-DMA
homo-N-Me-2,5-DMPEA
BO3MDM
BO3MEA
BO3EE
BO3P
N,N-Me-DMPEA-2
N-Me-2,3-DMA
N-Me-2,3-EMPEA
4C-2,4-DMPEA
2,4-DEPEA
N-Me,N-iPr-DHPEA
N-Bu-DHPEA
N-iBu-DHPEA
MHEA
N-Me-α-Et-GEA
Salicifoline
HMEA
N,N-Me-DMPEA
N-Et-DMPEA
DMMA
N-Me-EMPEA
EMA
MEA
DEPEA
β-HO-N-Me-2-M-5-MeA
N,N-Me-2,5-HMA
N,N-Me-2,5-DMPEA
β,N-Me-2,5-DMPEA
N,N-Me-3,5-DMPEA
N-Me-3,5-DMA
N,N-Me-2,6-DMPEA
N-Me-2,6-DMA
4-Me-2,3-DOM
3-Me-2,4-DOM
2-Me-3,4-DOM
5-Me-2,3-DOM
3-DOM
2-Me-3,5-DOM
β-Me-2C-D
5-Me-3,4-DOM
4-Me-3,5-DOM
6-Me-2,3-DOM
3-Me-2,6-DOM
2-Me-3,6-DOM
6-Me-2,4-EMPEA
944
BEATRICE
N-cPr-DOM
N-HO-DOM
N,N-Me-DOM
N-Et-DOM
N-cPM-DOM
ARIADNE
2C-D
α-Me-DOM · CHARMIAN
α-Carboxy-2C-D
α-Carboxy-DOM
β-Me-DOM
β,β-Me-DOM
β-HO-DOM
2-TOM
FLORENCE
2-DES-Me-DOM · 2-DM-DOM
2-BzO-DOM
535
2-Et-DOM
GANESHA
G-21
ALEPH
ALEPH-2
ALEPH-4
ALEPH-6
ALEPH-7
2,5-DMA
DOAM
DOB
DOBU
DOC
DOEF
DOET
DOI
DON
DOPR
MEM
MPM
TMA-2
DOF
DOIB
DOTB
DOSB
DONH · DOA
DOAA
Hydroxy-DOPR
DOIP
MIPM
MBM
MAM
DOHE
DOBZ
DOCPM
ALEPH-8
ALEPH-5
ALEPH-16
ALEPH-21
DOTFM
2328
DOYN
DOCN
DOPh3
2325
2329
2330
DOVI
DOAC
DOCA
DOOH
DOCONHP
DOCOE
DOCEB
DOCEP
DOOC
DONMM
DOFM
DOHM
DOHP
DONO
DOEH
M(2OP)M
M(3OP)M
MBZM
ALEPH-19
ALEPH-S-amyl
ALEPH-S-PhEt
ALEPH sulfone
DOTFE
MTFEM
MDFEM
MFEM
DOBM
DOMCl
DOCET
DOTFPR
DOHSM
DOMSM
DOMOM
DONCO
DONCOE
DONCOTFM
DOCNM
1016
IRIS
5-TOM
5-TOMSO · TOMSO
2,4-MMA · 5-H-DOM
5-DES-Me-DOM · 5-DM-DOM
5-Et-DOM
DMCPA
α-CP-2C-D
DOMAI · DOM-AI
DOMAT · DOM-AT
homo-DOM
DMMCPA
HO-DOMAI
DMMCPA
DMCBA
2C-E
2C-G
ψ-DOM
2,5-DMMA · METHYL-DMA
4C-DMA · 4C-H
4C-DMPEA
N-Me-2C-D
2C-D-2-EtO · 2CD-2ETO
2C-D-5-EtO · 2CD-5ETO
m-DOM · 5-DOM
o-DOM · 2-DOM
6-Me-2,4-DOM · Z-7.1
2,4-DMMA
ψ-2C-E
4-Propoxynorephedrine
homo-DMA
homo-N-Me-2,5-DMPEA
BO3MDM
BO3MEA
BO3EE
BO3P
N,N-Me-DMPEA-2
N-Me-2,3-DMA
N-Me-2,3-EMPEA
4C-2,4-DMPEA
2,4-DEPEA
N-Me,N-iPr-DHPEA
N-Bu-DHPEA
N-iBu-DHPEA
MHEA
N-Me-α-Et-GEA
Salicifoline
HMEA
N,N-Me-DMPEA
N-Et-DMPEA
DMMA
N-Me-EMPEA
EMA
MEA
DEPEA
β-HO-N-Me-2-M-5-MeA
N,N-Me-2,5-HMA
N,N-Me-2,5-DMPEA
β,N-Me-2,5-DMPEA
N,N-Me-3,5-DMPEA
N-Me-3,5-DMA
N,N-Me-2,6-DMPEA
N-Me-2,6-DMA
4-Me-2,3-DOM
3-Me-2,4-DOM
2-Me-3,4-DOM
5-Me-2,3-DOM
3-DOM
2-Me-3,5-DOM
β-Me-2C-D
5-Me-3,4-DOM
4-Me-3,5-DOM
6-Me-2,3-DOM
3-Me-2,6-DOM
2-Me-3,6-DOM
6-Me-2,4-EMPEA
944
24 July 2017 · Creative Commons BY-NC-SA ·