Go to PiHKAL • info home
Browse the short index of PiHKAL phenethylamines. Read book II of PiHKAL
Search for phenethylamines and related structures Beyond PiHKAL—Selected writings by Sasha and others. Explore phenethylamine structures and analogues
The essential oils and their amphetamine analogues How PiHKAL • info differs from the printed version
Go to TiHKAL • info home
You are currently exploring IBF5MAP.
To explore a different substance, type its name: Help
IBF5MAP; 1-(1,3-Dihydro-2-benzofuran-5-yl)-N-methylpropan-2-amine
6481
Variant: N R3,4 isomers all
Analogues: 1 10 16 27

IUPAC: 1-(1,3-Dihydro-2-benzofuran-5-yl)-N-methylpropan-2-amine

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: RFIJNWGOFCMHHI-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-9(13-2)5-10-3-4-11-7-14-8-12(11)6-10/h3-4,6,9,13H,5,7-8H2,1-2H3

Shulgin Index: See #77 MDA; Table: 4 Page: 327 Row: 31

One N analogue:
6480
Analogue 1: Removing Methyl at N

IBF5AP

IUPAC: 1-(1,3-Dihydro-2-benzofuran-5-yl)propan-2-amine

Formula: C11H15NO Molecular weight: 177.2429 g/mol InChI Key: SLAQRQKVPQBGDF-UHFFFAOYSA-N

InChI=1S/C11H15NO/c1-8(12)4-9-2-3-10-6-13-7-11(10)5-9/h2-3,5,8H,4,6-7,12H2,1H3

Shulgin Index: See #77 MDA; Table: 4 Page: 327 Row: 30

10 R3,4 analogues:
109
Analogue 1: Substituting Methylenedioxy for 2,5-Dihydrofuro[c] at R3,4

MDMA
XTC
X
MDM
ADAM
Ecstasy
N-Methyl-3,4-methylenedioxyamphetamine
3,4-Methylenedioxy-N-methylamphetamine

IUPAC: 1-(1,3-Benzodioxol-5-yl)-N-methylpropan-2-amine

Formula: C11H15NO2 Molecular weight: 193.2423 g/mol InChI Key: SHXWCVYOXRDMCX-UHFFFAOYSA-N

InChI=1S/C11H15NO2/c1-8(12-2)5-9-3-4-10-11(6-9)14-7-13-10/h3-4,6,8,12H,5,7H2,1-2H3

PubChem CID: 1615; ChemSpider: 1556; Drugs Forum: MDMA; Erowid: MDMA; Wikipedia: MDMA

Shulgin Index: #82 MDMA; Table: 4 Page: 331 Row: 21

See also PiHKAL: #14 BOD
#20 2C-B
#34 2C-N
#39 2C-T
#40 2C-T-2
#43 2C-T-7
#58 DMMDA
#67 DOI
#77 ETHYL-J
#81 FLEA
#94 J
#96 M
#98 MADAM-6
#100 MDA
#101 MDAL
#102 MDBU
#103 MDBZ
#104 MDCPM
#105 MDDM
#106 MDE
#107 MDHOET
#108 MDIP
#110 MDMC
#111 MDMEO
#112 MDMEOET
#113 MDMP
#114 MDOH
#116 MDPH
#117 MDPL
#118 MDPR
#119 ME
#122 MEM
#126 METHYL-DMA
#127 METHYL-DOB
#128 METHYL-J
#130 METHYL-MA
#132 MMDA
#133 MMDA-2
#142 PEA
See also TiHKAL: #1 AL-LAD
#4 DIPT
#5 α,O-DMS
#8 α,N-DMT
#11 α-ET
#13 Harmaline
#17 4-HO-DIPT
#18 4-HO-DMT
#22 4-HO-MIPT
#31 5,6-MDO-DMT
#38 5-MeO-DMT
#51 PRO-LAD
#55 α,N,O-TMS

See also Transcripts: 1.139, 1.186, 2.207, 2.210, 2.230, 2.231, 2.232, 2.233, 2.234, 2.235, 2.241, 2.242, 2.243, 2.261, 2.271, 2.275, 2.284, 2.289, 2.290, 2.295, 2.299, 2.304, 2.306, 2.307, 2.311, 2.314, 2.320, 3.328, 3.331, 3.333, 3.336, 3.340, 3.350, 3.360, 3.362, 3.366, 3.374, 3.375, 3.376, 3.378, 3.379, 3.382, 3.384, 3.385, 3.386, 3.387, 3.388, 3.391, 3.392, 3.393, 3.398, 3.399, 3.403, 3.404, 3.405, 3.408, 3.410, 3.414, 3.415, 3.420, 3.421, 3.423, 3.425, 3.427, 3.435, 3.441, 3.442, 3.444, 4.456, 4.457, 4.458, 4.463, 4.467, 4.467.2, 4.469, 4.473, 4.488, 4.492, 4.493, 4.494, 4.496, 4.503, 4.504, 4.505, 4.506, 4.507, 4.510, 4.520, 5.568, 5.570, 5.572, 5.583, 5.584, 5.594, 5.600, 5.601, 5.608, 5.609, 5.610, 5.611, 5.612, 5.613, 5.614, 5.621, 5.622, 5.623, 5.624, 5.629, 5.630, 5.632, 5.635, 5.636, 5.637, 5.638, 5.640, 5.641, 5.642, 5.643, 5.653, 5.654, 5.655, 5.656, 5.657, 5.658, 5.659, 5.660, 5.663, 5.664

See also Pharmacology notes I: p. 139, The Pseunut Cocktail
p. 186, MDMA
See also Pharmacology notes II: p. 207, MDMA
p. 210, MDMA
p. 230, MDMA
p. 231, MDMA
p. 232, MDMA
p. 233, MDMA: Saturation experiments
p. 234, MDMA: Saturation experiments
p. 235, MDMA
p. 241, MDMA
p. 242, MDMA
p. 243, MDMA
p. 261, MDMA
p. 271, MDMA
p. 275, MDMA: Report of results
p. 284, MDMA: Report of experience
p. 289, MDMA: Report of experience
p. 290, MDMA
p. 295, MDMA: Report of experience
p. 299, MDMA: Report of experience
p. 304, MDMA: Report of experience
p. 306, MDMA: Report of experiment
p. 307, MDMA: Report of experiment
p. 311, MDMA: Report of experience
p. 314, MDMA: Report of experience
p. 320, MDMA: Report of experience

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. doi:10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and Its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. doi:10.1002/cbdv.200690035

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 13 Dec 2011. 1038 kB. doi:10.1002/dta.413

Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. doi:10.1002/jps.2600690220

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; Vol. 11, pp 243–333. 2584 kB. doi:10.1007/978-1-4757-0510-2_6 Rhodium.

Oberlender, R; Nichols, DE. Drug discrimination studies with MDMA and amphetamine. Psychopharmacology, 1 May 1988, 95 (1), 71–26. 674 kB. doi:10.1007/BF00212770

Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. doi:10.1007/BF03033455

Benzenhöfer, U; Passie, T. Zur Frühgeschichte von “Ecstasy” Nervenarzt, 2006, 77 (1), 95–96, 98–99. 533 kB. doi:10.1007/s00115-005-2001-y

Capela, JP; Carmo, H; Remião, F; Bastos, ML; Meisel, A; Carvalho, FG. Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: An overview. Mol. Neurobiol., 1 Jun 2009, 39 (3), 210–271. 1946 kB. doi:10.1007/s12035-009-8064-1

Johnson, MP; Hoffman, AJ; Nichols, DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 16 Dec 1986, 132 (2–3), 269–276. 559 kB. doi:10.1016/0014-2999(86)90615-1

Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. doi:10.1016/0014-2999(87)90555-8

Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 9–16. 1107 kB. doi:10.1016/0014-2999(91)90659-E

Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 53–58. 714 kB. doi:10.1016/0014-2999(91)90664-C

Huang, X; Nichols, DE. 5-HT2 receptor-mediated potentiation of dopamine synthesis and central serotonergic deficits. Eur. J. Pharmacol., 1 Jan 1993, 238 (2–3), 291–296. 553 kB. doi:10.1016/0014-2999(93)90859-G

Sprague, JE; Huang, X; Kanthasamy, A; Nichols, DE. Attenuation of 3,4-methylenedioxymethamphetamine (MDMA) induced neurotoxicity with the serotonin precursors tryptophan and 5-hydroxytryptophan. Life Sci., 1 Jan 1994, 55 (15), 1193–1198. 336 kB. doi:10.1016/0024-3205(94)00658-X

Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. doi:10.1016/0091-3057(88)90001-9

Steele, TD; Nichols, DE; Yim, GKW. MDMA transiently alters biogenic amines and metabolites in mouse brain and heart. Pharmacol. Biochem. Behav., 1 Jan 1989, 34 (2), 223–227. 477 kB. doi:10.1016/0091-3057(89)90303-1

Johnson, MP; Nichols, DE. Neurotoxic effects of the alpha-ethyl homologue of MDMA following subacute administration. Pharmacol. Biochem. Behav., 1 Jan 1989, 33 (1), 105–108. 399 kB. doi:10.1016/0091-3057(89)90437-1

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. doi:10.1016/0091-3057(91)90005-M

Johnson, MP; Huang, X; Nichols, DE. Serotonin neurotoxicity in rats after combined treatment with a dopaminergic agent followed by a nonneurotoxic 3,4-methylenedioxymethamphetamine (MDMA) analogue. Pharmacol. Biochem. Behav., 1 Jan 1991, 40 (4), 915–922. 845 kB. doi:10.1016/0091-3057(91)90106-C

Steele, TD; Brewster, WK; Johnson, MP; Nichols, DE; Yim, GKW. Assessment of the role of α-methylepinine in the neurotoxicity of MDMA. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (2), 345–351. 723 kB. doi:10.1016/0091-3057(91)90289-E

Marona-Lewicka, D; Rhee, G; Sprague, JE; Nichols, DE. Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol. Biochem. Behav., 1 Jan 1996, 53 (1), 99–105. 1028 kB. doi:10.1016/0091-3057(95)00205-7

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. doi:10.1016/S0006-2952(97)00405-X

Lieberman, JA; Mailman, RB; Duncan, G; Sikich, L; Chakos, M; Nichols, DE; Kraus, JE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol. Psychiat., 1 Dec 1998, 44 (11), 1099–1117. 154 kB. doi:10.1016/S0006-3223(98)00187-5

Cozzi, NV; Sievert, MK; Shulgin, AT; Jacob, P; Ruoho, AE. Inhibition of plasma membrane monoamine transporters by β-ketoamphetamines. Eur. J. Pharmacol., 1 Jan 1999, 381 (1), 63–69. 111 kB. doi:10.1016/S0014-2999(99)00538-5

Falk, EM; Cook, VJ; Nichols, DE; Sprague, JE. An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol. Biochem. Behav., 1 Jan 2002, 72 (3), 617–622. 120 kB. doi:10.1016/S0091-3057(02)00728-1

Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. doi:10.1016/S0304-3940(02)00823-6

Eshleman, AJ; Wolfrum, KM; Hatfield, MG; Johnson, RA; Murphy, KV; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol., 15 Jun 2013, 85 (12), 1803–1815. 2164 kB. doi:10.1016/j.bcp.2013.04.004

Dybdal-Hargreaves, NF; Holder, ND; Ottoson, PE; Sweeney, MD; Williams, T. Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur. J. Pharmacol., 15 Aug 2013, 714 (1–3), 32–40. 837 kB. doi:10.1016/j.ejphar.2013.05.024

Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. doi:10.1016/j.forsciint.2004.06.016

Maher, HM; Awad, T; DeRuiter, J; Clark, CR. GC–IRD methods for the identification of some tertiary amines related to MDMA. Forensic Sci. Int., 15 Jun 2010, 199 (1–3), 18–28. 877 kB. doi:10.1016/j.forsciint.2010.02.022

Pilgrim, JL; Gerostamoulos, D; Woodford, N; Drummer, OH. Serotonin toxicity involving MDMA (ecstasy) and moclobemide. Forensic Sci. Int., 10 Feb 2012, 215 (1–3), 184–188. 189 kB. doi:10.1016/j.forsciint.2011.04.008

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. doi:10.1016/j.forsciint.2011.11.003

Stojanovska, N; Fu, S; Tahtouh, M; Kelly, T; Beavis, A; Kirkbride, KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int., 10 Jan 2013, 224 (1–3), 8–26. 813 kB. doi:10.1016/j.forsciint.2012.10.040

Halpin, LE; Collins, SA; Yamamoto, BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci., 27 Feb 2014, 97 (1), 37–44. 507 kB. doi:10.1016/j.lfs.2013.07.014

Angoa-Pérez, M; Kane, MJ; Herrera-Mundo, N; Francescutti, DM; Kuhn, DM. Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci., 27 Feb 2014, 97 (1), 31–36. 888 kB. doi:10.1016/j.lfs.2013.07.015

Felice, LJD; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 697 kB. doi:10.1016/j.lfs.2013.10.029

Passie, T; Hartmann, U; Schneider, U; Emrich, HM; Krüger, THC. Ecstasy (MDMA) mimics the post-orgasmic state: Impairment of sexual drive and function during acute MDMA-effects may be due to increased prolactin secretion. Med. Hypotheses, 2005, 64 (5), 899–903. 110 kB. doi:10.1016/j.mehy.2004.11.044

Capela, JP; Macedo, C; Branco, PS; Ferreira, LM; Lobo, AM; Fernandes, E; Remião, F; Bastos, ML; Dirnagl, U; Meisel, A; Carvalho, FG. Neurotoxicity mechanisms of thioether Ecstasy metabolites. Neuroscience, 1 Jan 2007, 146, 1743–1757. 995 kB. doi:10.1016/j.neuroscience.2007.03.028

Selken, J; Nichols, DE. α1-Adrenergic receptors mediate the locomotor response to systemic administration of (±)-3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol. Biochem. Behav., 1 Jan 2007, 86 (4), 622–630. 1005 kB. doi:10.1016/j.pbb.2007.02.006

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. doi:10.1016/j.pbb.2007.06.001

Mohamed, WMY; Hamida, SB; Cassel, J; Vasconcelos, AP; Jones, BC. MDMA: Interactions with other psychoactive drugs. Pharmacol. Biochem. Behav., 1 Oct 2011, 99 (4), 759–774. 396 kB. doi:10.1016/j.pbb.2011.06.032

Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. doi:10.1016/j.talanta.2007.06.012

Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. doi:10.1016/j.tips.2004.08.001

Sprague, JE; Nichols, DE. Neurotoxicity of MDMA (ecstasy): beyond metabolism. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 59–60. 60 kB. doi:10.1016/j.tips.2004.12.001

Torre, R; Farré, M; Monks, TJ; Jones, D. Response to Sprague and Nichols: Contribution of metabolic activation to MDMA neurotoxicity. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 60–61. 60 kB. doi:10.1016/j.tips.2004.12.004

Nichols, DE; Hoffman, AJ; Oberlender, RA; Jacob, P; Shulgin, AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: Representatives of a novel therapeutic class. J. Med. Chem., 1 Jan 1986, 29 (10), 2009–2015. 1024 kB. doi:10.1021/jm00160a035

Nichols, DE; Lloyd, DH; Hoffman, AJ; Nichols, MB; Yim, GKW. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J. Med. Chem., 1 Jan 1982, 25 (5), 530–535. 804 kB. doi:10.1021/jm00347a010

Baumann, MH; Ayestas, MA; Partilla, JS; Sink, JR; Shulgin, AT; Daley, PF; Brandt, SD; Rothman, RB; Ruoho, AE; Cozzi, NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology, 1 Apr 2012, 37, 1192–1203. 763 kB. doi:10.1038/npp.2011.304

Baumann, MH; Clark, RD; Budzynski, AG; Partilla, JS; Blough, BE; Rothman, RB. N-Substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or ‘Ecstasy’). Neuropsychopharmacology, 1 Mar 2005, 30 (3), 550–560. 184 kB. doi:10.1038/sj.npp.1300585

Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 2002, 1634–1638. 115 kB. doi:10.1039/b200607c

Gandy, MN; Mclldowie, M; Lewis, K; Wasik, AM; Salomonczyk, D; Wagg, K; Millar, ZA; Tindiglia, D; Huot, P; Johnston, T; Thiele, S; Nguyen, B; Barnes, NM; Brotchie, JM; Martin-Iverson, MT. Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt’s lymphoma cytotoxicity. Med. Chem. Comm., 2010, 1 (4), 287–293. 177 kB. doi:10.1039/c0md00108b

Shulgin, AT. The background and chemistry of MDMA. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 291–304. 13190 kB. doi:10.1080/02791072.1986.10472361

Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 305–313. 10675 kB. doi:10.1080/02791072.1986.10472362

Pentney, AR. An exploration of the history and controversies surrounding MDMA and MDA. J. Psychoactive Drugs, 1 Jul 2001, 33 (3), 213–221. 871 kB. doi:10.1080/02791072.2001.10400568

Moonzwe, LS; Schensul, JJ; Kostick, KM. The role of MDMA (Ecstasy) in coping with negative life situations among urban young adults. J. Psychoactive Drugs, 29 Aug 2011, 43 (3), 199–210. 137 kB. doi:10.1080/02791072.2011.605671

Shulgin, AT; Jacob, P. Potential misrepresentation of 3,4-methylene-dioxyamphetamine (MDA). A toxicological warning. J. Anal. Toxicol., 1 Jan 1982, 6 (2), 71–75. 5581 kB. doi:10.1093/jat/6.2.71

Benzenhöfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. doi:10.1111/j.1360-0443.2010.02948.x

Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. doi:10.1124/jpet.106.103622

Green, AR; Mechan, AO; Elliott, JM; O’Shea, E; Colado, MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). Pharmacol. Rev., 1 Jan 2003, 55 (3), 463–508. 544 kB. doi:10.1124/pr.55.3.3

Galloway, G; Shulgin, AT; Kornfeld, H; Frederick, SL. Amphetamine, not MDMA, is associated with intracranial hemorrhage. J. Accid Emerg Med., 1 Jan 1995, 12 (3), 231–2. 428 kB. doi:10.1136/emj.12.3.231 The target of Sasha’s critique: Intracranial haemorrhage associated with ingestion of ‘Ecstasy’.

Griffin, OH. Is the government keeping the peace or acting like our parents? Rationales for the legal prohibitions of GHB and MDMA. J. Drug Issues, 1 Jul 2012, 42 (3), 247–262. 703 kB. doi:10.1177/0022042612456014

Sessa, B; Nutt, DJ. MDMA, politics and medical research: Have we thrown the baby out with the bathwater? J. Psychopharmacol., 1 Nov 2007, 21 (8), 787–791. 178 kB. doi:10.1177/0269881107084738

Brunt, TM; Poortman, A; Niesink, RJM; Brink, W. Instability of the ecstasy market and a new kid on the block: mephedrone. J. Psychopharmacol., 1 Nov 2011, 25 (11), 1543–1547. 238 kB. doi:10.1177/0269881110378370

Armenian, P; Mamantov, TM; Tsutaoka, BT; Gerona, RRL; Silman, EF; Wu, AHB; Olson, KR. Multiple MDMA (ecstasy) overdoses at a rave event: A case series. J. Intensive Care, 2012. 130 kB. doi:10.1177/0885066612445982

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. doi:10.1371/journal.pone.0009019

Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2235 kB. doi:10.1520/JFS12874J

Fromberg, E. Ecstasy: the Dutch story. J. Subst. Use, 1998, 3 (2), 89–94. 709 kB. doi:10.3109/14659899809053479

Grob, CS. Deconstructing ecstasy: The politics of MDMA research. Addict. Res. Theory, 2000, 8 (6), 549–588. 2361 kB. doi:10.3109/16066350008998989

Puerta, E; Aguirre, N. Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’): Neurodegeneration versus neuromodulation. Pharmaceuticals, 5 Jul 2011, 4 (7), 992–1018. 411 kB. doi:10.3390/ph4070992

Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1504 kB.

Shulgin, AT. History of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, S, Ed., Kluwer Academic Publishers, Norwell, MA, 1 Jan 1990; pp 1–20. 3840 kB.

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.

Shulgin, AT; Nichols, DE. Characterization of three new psychotomimetics. In The Psychopharmacology of Hallucinogens; Stillman, RC; Willette, RE, Eds., Pergamon Press, New York, 1 Jan 1978; pp 74–84. 547 kB.

Kalant, H. The pharmacology and toxicology of “Ecstasy” (MDMA) and related drugs. CMAJ, 1 Jan 2001, 165 (7), 917–928. 253 kB.

Trudeau, GB. Ecstasy: Whither the future? In Doonesbury Deluxe; , Henry Holt and Company, 19 Aug 1985; . 3328 kB.

Fenderson5555. Mechanisms in MDMA synthesis. 5 Jan 2011. 4446 kB.

Vollenweider, FX; Geyer, M; Greer, G. Acute psychological and neurophysiological effects of MDMA in humans. In Heffter Review; Nichols, DE, Ed., Heffter Research Institute, Santa Fe, NM, 2001; Vol. 2, pp 53–63. 338 kB.

Bailey, K; By, AW; Legault, D; Verner, D. Identification of the N-methylated analogs of the hallucinogenic amphetamines and some isomers. J. Assoc. Off. Anal. Chem., 1975, 58 (1), 62–69. 1987 kB.

Oberlender, R; Nichols, DE. (+)-N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxymethamphetamine-like behavioral activity. J. Pharmacol. Exp. Ther., 1 Dec 1990, 255 (3), 1098–1106. 1876 kB.

Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7938 kB.

Makino, Y; Kurobane, S; Miyasaka, K. Profiling of ecstasy tablets seized in Japan. Microgram J., 1 Jul 2003, 1 (3–4), 169–176. 614 kB.

Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.

Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 2012, 9 (1), 27–32. 496 kB.

Shulgin, AT. What is MDMA? PharmChem Newsletter, 1 Jan 1985, 14 (3), 3–11. 952 kB.

Mumane, KS. Neuropharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers. Ph. D. Thesis, Emory University, Atlanta, GA, USA, 2010. 4307 kB.

Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.

Callaghan, PD. Comparative neuropharmacology of the substituted amphetamines, p-methoxyamphatamine (PMA) & 3,4-methylenedioxymethamphetamine (MDMA). Ph. D. Thesis, University of Adelaide, Adelaide, Australia, 1 Aug 2008. 1551 kB.

Brown, CR; McKinney, H; Osterloh, JD; Shulgin, AT; Jacob, P; Olson, KR. Severe adverse reaction to 3,4-methylenedioxymethamphetamine (MDMA). Vet. Hum. Toxicol., 1 Oct 1986, 28 (5), 490. 239 kB.

Meyers-Riggs, B. The mirrored magic of MDMA. countyourculture: rational exploration of the underground, 23 May 2011.

Shulgin, AT. Thought policing MDMA users (AB 1416). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 20 Apr 2001.

Shulgin, AT. Ecstasy pill testing. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 12 Sep 2002.

Shulgin, AT. MDMA isomers. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 27 Aug 2001.

Shulgin, AT. Making MDA, MDEA, MDMA. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Mar 2001.

Shulgin, AT. MDMA (Ecstasy) v. Methamphetamine. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Feb 2001.

Shulgin, AT. MDMA and its methylenedioxy ring. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 3 Jun 2003.

Shulgin, AT. Taking MDMA (Ecstasy) and other drugs when pregnant. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 28 Jan 2003.

Shulgin, AT. Roadblocks to entheogen research. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 12 Sep 2001.

Shulgin, AT. Making MDMA (II): “Ecstasy”, MDMA, & Safrole. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 1 May 2002.

Shulgin, AT. MDMA (Ecstasy) tolerance. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 10 Apr 2002.

Shulgin, AT. Drug testing hair for MDMA (Ecstasy). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 4 Mar 2005.

110
Analogue 2: Substituting Ethylenedioxy for 2,5-Dihydrofuro[c] at R3,4

MDMC
EDMA
N-Methyl-3,4-ethylenedioxyamphetamine
3,4-Ethylenedioxy-N-methylamphetamine

IUPAC: 1-(2,3-Dihydro-1,4-benzodioxin-6-yl)-N-methylpropan-2-amine

Formula: C12H17NO2 Molecular weight: 207.26888 g/mol InChI Key: UJKWLAZYSLJTKA-UHFFFAOYSA-N

InChI=1S/C12H17NO2/c1-9(13-2)7-10-3-4-11-12(8-10)15-6-5-14-11/h3-4,8-9,13H,5-7H2,1-2H3

PubChem CID: 24257269; ChemSpider: 23553090; Wikipedia: EDMA

Shulgin Index: See #65 EDA; Table: 4 Page: 334 Row: 1

See also PiHKAL: #100 MDA      

Shulgin, AT. MDMA and its methylenedioxy ring. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 3 Jun 2003.

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. doi:10.1016/0091-3057(91)90005-M

2315
Analogue 3: Substituting 1,1-Difluoromethylenedioxy for 2,5-Dihydrofuro[c] at R3,4

F2-MDMA
DFMDMA
3,4-(1,1-Difluoromethylenedioxy)-N-methylamphetamine

IUPAC: 1-(2,2-Difluoro-1,3-benzodioxol-5-yl)-N-methylpropan-2-amine

Formula: C11H13F2NO2 Molecular weight: 229.2232264 g/mol InChI Key: YZYZCMNVUDUELW-UHFFFAOYSA-N

InChI=1S/C11H13F2NO2/c1-7(14-2)5-8-3-4-9-10(6-8)16-11(12,13)15-9/h3-4,6-7,14H,5H2,1-2H3

Shulgin Index: See #82 MDMA; Table: 4 Page: 333 Row: 27

Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and Its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. doi:10.1002/cbdv.200690035

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Anal., 13 Dec 2011. 1038 kB. doi:10.1002/dta.413

5555
Analogue 4: Substituting Trimethylene for 2,5-Dihydrofuro[c] at R3,4

IMA
IMP
Indanylmethylaminopropane
N-Methyl-3,4-trimethyleneamphetamine

IUPAC: 1-(2,3-Dihydro-1H-inden-5-yl)-N-methylpropan-2-amine

Formula: C13H19N Molecular weight: 189.29666 g/mol InChI Key: MHBKJTHGGWQKSG-UHFFFAOYSA-N

InChI=1S/C13H19N/c1-10(14-2)8-11-6-7-12-4-3-5-13(12)9-11/h6-7,9-10,14H,3-5,8H2,1-2H3

PubChem CID: 57461970; ChemSpider: 26679339

Shulgin Index: See #42 DMeA; Table: 4 Page: 327 Row: 27

6528
Analogue 5: Substituting Dihydroxy for 2,5-Dihydrofuro[c] at R3,4

DHMA

IUPAC: 4-[2-(Methylamino)propyl]benzene-1,2-diol

Formula: C10H15NO2 Molecular weight: 181.2316 g/mol InChI Key: NTCPGTZTPGFNOM-UHFFFAOYSA-N

InChI=1S/C10H15NO2/c1-7(11-2)5-8-3-4-9(12)10(13)6-8/h3-4,6-7,11-13H,5H2,1-2H3

PubChem CID: 161126; ChemSpider: 141547

Shulgin Index: See #33 DHA; Table: 4 Page: 328 Row: 28

Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. doi:10.1016/j.tips.2004.08.001

Steele, TD; Brewster, WK; Johnson, MP; Nichols, DE; Yim, GKW. Assessment of the role of α-methylepinine in the neurotoxicity of MDMA. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (2), 345–351. 723 kB. doi:10.1016/0091-3057(91)90289-E

Capela, JP; Macedo, C; Branco, PS; Ferreira, LM; Lobo, AM; Fernandes, E; Remião, F; Bastos, ML; Dirnagl, U; Meisel, A; Carvalho, FG. Neurotoxicity mechanisms of thioether Ecstasy metabolites. Neuroscience, 1 Jan 2007, 146, 1743–1757. 995 kB. doi:10.1016/j.neuroscience.2007.03.028

Felim, A; Herrera, G; Neudörffer, A; Blanco, M; O’Connor, J; Largeron, M. Synthesis and in vitro cytotoxicity profile of the R-enantiomer of 3,4-dihydroxymethamphetamine (R-(-)-HHMA): Comparison with related catecholamines. Chem. Res. Toxicol., 2010, 23 (1), 211–219. 349 kB. doi:10.1021/tx9003374

6620
Analogue 6: Substituting Dimethoxy for 2,5-Dihydrofuro[c] at R3,4

DMMA

IUPAC: 1-(3,4-Dimethoxyphenyl)-N-methylpropan-2-amine

Formula: C12H19NO2 Molecular weight: 209.28476 g/mol InChI Key: BUWHCARWGYFQPE-UHFFFAOYSA-N

InChI=1S/C12H19NO2/c1-9(13-2)7-10-5-6-11(14-3)12(8-10)15-4/h5-6,8-9,13H,7H2,1-4H3

PubChem CID: 12235308; ChemSpider: 10467995

Felim, A; Herrera, G; Neudörffer, A; Blanco, M; O’Connor, J; Largeron, M. Synthesis and in vitro cytotoxicity profile of the R-enantiomer of 3,4-dihydroxymethamphetamine (R-(-)-HHMA): Comparison with related catecholamines. Chem. Res. Toxicol., 2010, 23 (1), 211–219. 349 kB. doi:10.1021/tx9003374

Clark, CC. The identification of methoxy-N-methylamphetamines. J. Forensic Sci., 1 Oct 1984, 29 (4), 1056–1071. 423 kB. doi:10.1520/JFS11772J

1288
Analogue 7: Substituting Furo[d] for 2,5-Dihydrofuro[c] at R3,4

6-MAPB

IUPAC: 1-(1-Benzofuran-6-yl)-N-methylpropan-2-amine

Formula: C12H15NO Molecular weight: 189.2536 g/mol InChI Key: QLAAURQYEAEHBO-UHFFFAOYSA-N

InChI=1S/C12H15NO/c1-9(13-2)7-10-3-4-11-5-6-14-12(11)8-10/h3-6,8-9,13H,7H2,1-2H3

Wikipedia: 6-MAPB

1289
Analogue 8: Substituting Furo[b] for 2,5-Dihydrofuro[c] at R3,4

5-MAPB

IUPAC: 1-(1-Benzofuran-5-yl)-N-methylpropan-2-amine

Formula: C12H15NO Molecular weight: 189.2536 g/mol InChI Key: ZOVRTIPCNFERHY-UHFFFAOYSA-N

InChI=1S/C12H15NO/c1-9(13-2)7-10-3-4-12-11(8-10)5-6-14-12/h3-6,8-9,13H,7H2,1-2H3

Wikipedia: 5-MAPB

1428
Analogue 9: Substituting 2,3-Dihydrofuro[d] for 2,5-Dihydrofuro[c] at R3,4

6-MAPDB

IUPAC: 1-(2,3-Dihydro-1-benzofuran-6-yl)-N-methylpropan-2-amine

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: ZKMVEORLSJXOBD-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-9(13-2)7-10-3-4-11-5-6-14-12(11)8-10/h3-4,8-9,13H,5-7H2,1-2H3

Wikipedia: 6-MAPDB

1429
Analogue 10: Substituting 2,3-Dihydrofuro[b] for 2,5-Dihydrofuro[c] at R3,4

5-MAPDB

IUPAC: 1-(2,3-Dihydro-1-benzofuran-5-yl)-N-methylpropan-2-amine

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: PLQTZOCLUHHCOI-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-9(13-2)7-10-3-4-12-11(8-10)5-6-14-12/h3-4,8-9,13H,5-7H2,1-2H3

Wikipedia: 5-MAPDB

16 isomers:
2360
Isomer 1

3,4-DMMC
3,4-Dimethylmethcathinone

IUPAC: 1-(3,4-Dimethylphenyl)-2-(methylamino)propan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: IBZRXTVDTGVBIS-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-8-5-6-11(7-9(8)2)12(14)10(3)13-4/h5-7,10,13H,1-4H3

PubChem CID: 52988261; ChemSpider: 25630192

Casale, JF; Hays, PA. Differentiation of 3,4-dimethylmethcathinone (3,4-DMMC) from its dimethyl aryl-positional isomers. Microgram J., 1 Jan 2012, 9 (2), 75–83. 1330 kB.

2362
Isomer 2

4-Me-MABP
4-Methylbuphedrone

IUPAC: 2-(Methylamino)-1-(4-methylphenyl)butan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: ZOGGCQVVLHCLHY-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-4-11(13-3)12(14)10-7-5-9(2)6-8-10/h5-8,11,13H,4H2,1-3H3

ChemSpider: 26702147

Uchiyama, N; Matsuda, S; Kawamura, M; Kikura-Hanajiri, R; Goda, Y. Identification of two new-type designer drugs, piperazine derivative MT-45 (I-C6) and synthetic peptide Noopept (GVS-111), with synthetic cannabinoid A-834735, cathinone derivative 4-methoxy-α-PVP, and phenethylamine derivative 4-methylbuphedrine from illegal products. Forensic Toxicol., 1 Jan 2014, 32 (1), 9–18. 678 kB. doi:10.1007/s11419-013-0194-5

2372
Isomer 3

4-MEC
4-Methylethcathinone

IUPAC: 2-(Ethylamino)-1-(4-methylphenyl)propan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: ZOXZWYWOECCBSH-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-4-13-10(3)12(14)11-7-5-9(2)6-8-11/h5-8,10,13H,4H2,1-3H3

PubChem CID: 52988259; ChemSpider: 25630091; Erowid: 4-Methylethcathinone (4-MEC); Wikipedia: 4-Methylethcathinone

Brandt, SD; Sumnall, HR; Measham, F; Cole, JC. Analyses of second-generation ‘legal highs’ in the UK: Initial findings. Drug Test. Anal., 1 Aug 2010, 2 (8), 377–382. 317 kB. doi:10.1002/dta.155

Jankovics, P; Váradi, A; Tölgyesi, L; Lohner, S; Németh-Palotás, J; Kőszegi-Szalai, H. Identification and characterization of the new designer drug 4′-methylethcathinone (4-MEC) and elaboration of a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) screening method for seven different methcathinone analogs. Forensic Sci. Int., 15 Jul 2011, 210 (1–3), 213–220. 899 kB. doi:10.1016/j.forsciint.2011.03.019

Zuba, D. Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. Trends Anal. Chem., 1 Feb 2012, 32, 15–30. 576 kB. doi:10.1016/j.trac.2011.09.009

Zuba, D; Byrska, B. Prevalence and co-existence of active components of ‘legal highs’ Drug Test. Anal., 1 Jun 2013, 5 (6), 420–429. 1294 kB. doi:10.1002/dta.1365

Kanu, AB; Brandt, SD; Williams, MD; Zhang, N; Hill, HH. Analysis of psychoactive cathinones and tryptamines by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry. Anal. Chem., 17 Sep 2013, 85 (18), 8535–8542. 1636 kB. doi:10.1021/ac401951a

Gil, D; Adamowicz, P; Skulska, A; Tokarczyk, B; Stanaszek, R. Analysis of 4-MEC in biological and non-biological material—Three case reports. Forensic Sci. Int., 10 May 2013, 228 (1–3), e11–e15. 554 kB. doi:10.1016/j.forsciint.2013.03.011

Iversen, L; Gibbons, S; Treble, R; Setola, V; Huang, X; Roth, BL. Neurochemical profiles of some novel psychoactive substances. Eur. J. Pharmacol., 30 Jan 2013, 700 (1–3), 147–151. 490 kB. doi:10.1016/j.ejphar.2012.12.006

2373
Isomer 4

4-EMC
4-Ethylmethcathinone

IUPAC: 1-(4-Ethylphenyl)-2-(methylamino)propan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: FUYPDKFWOHBUFT-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-4-10-5-7-11(8-6-10)12(14)9(2)13-3/h5-9,13H,4H2,1-3H3

ChemSpider: 25630253

416
Isomer 5

7,6-MMAT
2-Amino-7-methoxy-6-methyltetralin

IUPAC: 7-Methoxy-6-methyl-1,2,3,4-tetrahydronaphthalen-2-amine

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: LYSVMPZOKYHDLK-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-8-5-9-3-4-11(13)6-10(9)7-12(8)14-2/h5,7,11H,3-4,6,13H2,1-2H3

PubChem CID: 36245; ChemSpider: 33329

Shulgin Index: See #105 PAT; Table: 4 Page: 337 Row: 6, See #96 3,4-MMA; Table: 5 Page: 342 Row: 7

2430
Isomer 6

NEB
N-Ethylbuphedrone

IUPAC: 2-(Ethylamino)-1-phenylbutan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: HEPVRDHGUWFXJS-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-3-11(13-4-2)12(14)10-8-6-5-7-9-10/h5-9,11,13H,3-4H2,1-2H3

PubChem CID: 20326296

2434
Isomer 7

Pentedrone

IUPAC: 2-(Methylamino)-1-phenylpentan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: WLIWIUNEJRETFX-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-3-7-11(13-2)12(14)10-8-5-4-6-9-10/h4-6,8-9,11,13H,3,7H2,1-2H3

PubChem CID: 57501499; ChemSpider: 26286729

Zuba, D; Byrska, B. Prevalence and co-existence of active components of ‘legal highs’ Drug Test. Anal., 1 Jun 2013, 5 (6), 420–429. 1294 kB. doi:10.1002/dta.1365

Maheux, CR; Copeland, CR. Chemical analysis of two new designer drugs: Buphedrone and pentedrone. Drug Test. Anal., 1 Jan 2012, 4 (1), 17–23. 314 kB. doi:10.1002/dta.385

Westphal, F; Junge, T; Girreser, U; Greibl, W; Doering, C. Mass, NMR and IR spectroscopic characterization of pentedrone and pentylone and identification of their isocathinone by-products. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 157–167. 853 kB. doi:10.1016/j.forsciint.2011.10.045

Zuba, D. Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. Trends Anal. Chem., 1 Feb 2012, 32, 15–30. 576 kB. doi:10.1016/j.trac.2011.09.009

6051
Isomer 8

PAP

IUPAC: 1-Phenyl-2-(propylamino)propan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: GXPFWFAQFTVCDU-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-3-9-13-10(2)12(14)11-7-5-4-6-8-11/h4-8,10,13H,3,9H2,1-2H3

PubChem CID: 45049; ChemSpider: 40983

Shulgin Index: See #40 DMAP; Table: 2 Page: 319 Row: 1

6052
Isomer 9

i-PAP

IUPAC: 1-Phenyl-2-(propan-2-ylamino)propan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: LWRDNIQTNMVTBK-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-9(2)13-10(3)12(14)11-7-5-4-6-8-11/h4-10,13H,1-3H3

PubChem CID: 458522; ChemSpider: 403507

Shulgin Index: See #40 DMAP; Table: 2 Page: 319 Row: 2

Foley, KF; Cozzi, NV. Novel aminopropiophenones as potential antidepressants. Drug Develop. Res., 1 Dec 2003, 60 (4), 252–260. 1588 kB. doi:10.1002/ddr.10297

Foley, KF. Aminopropiophenones at the norepinephrine transporter: Structure-activity relationships and behavioral effects of methcathinone analogs. Ph. D. Thesis, Brody School of Medicine, Greenville, NC, USA, 1 May 2002. 8573 kB.

6956
Isomer 10

MMAT

IUPAC: 7-(Dimethylamino)-5,6,7,8-tetrahydronaphthalen-1-ol

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: KTJZAXFDNXGQDU-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-13(2)10-7-6-9-4-3-5-12(14)11(9)8-10/h3-5,10,14H,6-8H2,1-2H3

PubChem CID: 15629515; ChemSpider: 14106459

6957
Isomer 11

EHAT

IUPAC: 7-(Ethylamino)-5,6,7,8-tetrahydronaphthalen-1-ol

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: DTLFTJICCITUGW-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-2-13-10-7-6-9-4-3-5-12(14)11(9)8-10/h3-5,10,13-14H,2,6-8H2,1H3

PubChem CID: 21689038; ChemSpider: 14106470

Shulgin Index: See #105 PAT; Table: 4 Page: 337 Row: 7

1235
Isomer 12

Phendimetrazine

IUPAC: 3,4-Dimethyl-2-phenylmorpholine

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: MFOCDFTXLCYLKU-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-10-12(14-9-8-13(10)2)11-6-4-3-5-7-11/h3-7,10,12H,8-9H2,1-2H3

PubChem CID: 12460; ChemSpider: 11950

Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. doi:10.1124/jpet.106.103622

Clarke, EGC. The identification of amphetamine type drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 31–36. 770 kB. doi:10.1016/S0015-7368(67)70368-0

Banks, ML; Blough, BE; Fennell, TR; Snyder, RW; Negus, SS. Role of phenmetrazine as an active metabolite of phendimetrazine: Evidence from studies of drug discrimination and pharmacokinetics in rhesus monkeys. Drug Alcohol Depend., 1 Jun 2013, 130 (1–3), 158–166. 520 kB. doi:10.1016/j.drugalcdep.2012.10.026

2527
Isomer 13

Isopentedrone

IUPAC: 1-(Methylamino)-1-phenylpentan-2-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: ILGRTMNCRBDXBI-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-3-7-11(14)12(13-2)10-8-5-4-6-9-10/h4-6,8-9,12-13H,3,7H2,1-2H3

Westphal, F; Junge, T; Girreser, U; Greibl, W; Doering, C. Mass, NMR and IR spectroscopic characterization of pentedrone and pentylone and identification of their isocathinone by-products. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 157–167. 853 kB. doi:10.1016/j.forsciint.2011.10.045

1428
Isomer 14

6-MAPDB

IUPAC: 1-(2,3-Dihydro-1-benzofuran-6-yl)-N-methylpropan-2-amine

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: ZKMVEORLSJXOBD-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-9(13-2)7-10-3-4-11-5-6-14-12(11)8-10/h3-4,8-9,13H,5-7H2,1-2H3

Wikipedia: 6-MAPDB

1429
Isomer 15

5-MAPDB

IUPAC: 1-(2,3-Dihydro-1-benzofuran-5-yl)-N-methylpropan-2-amine

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: PLQTZOCLUHHCOI-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-9(13-2)7-10-3-4-12-11(8-10)5-6-14-12/h3-4,8-9,13H,5-7H2,1-2H3

Wikipedia: 5-MAPDB

2576
Isomer 16

EMC
N-Ethylmethcathinone

IUPAC: 2-[Ethyl(methyl)amino]-1-phenylpropan-1-one

Formula: C12H17NO Molecular weight: 191.26948 g/mol InChI Key: LOQPFJRCXJZNQV-UHFFFAOYSA-N

InChI=1S/C12H17NO/c1-4-13(3)10(2)12(14)11-8-6-5-7-9-11/h5-10H,4H2,1-3H3

Show all 27 analogues and isomers Show only the one N analogues Show only the 10 R3,4 analogues
Page updated 22 December 2014 · This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License ·