5380 ·  C18H22INO3 ·  427.277
 ZFUOLNAKPBFDIJ-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Nichols, DE; Frescas, SP; Chemel, BR; Rehder, KS; Zhong, D; Lewin, AH. High specific activity tritium-labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): A high-affinity 5-HT2A receptor-selective agonist radioligand. Bioorg. Med. Chem., 1 Jan 2008, 16 (10), 6116–6123. 251 kB. https://doi.org/10.1016/j.bmc.2008.04.050

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #25I-NBOMe

Ettrup, A; Hansen, M; Santini, MA; Paine, J; Gillings, N; Palner, M; Lehel, S; Herth, MM; Madsen, J; Kristensen, JL; Begtrup, M; Knudsen, GM. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur. J. Nucl. Med. Mol. Imaging, 1 Apr 2011, 38 (4), 681–693. 752 kB. https://doi.org/10.1007/s00259-010-1686-8

Heim, R. Synthesis and pharmacology of potent 5-HT2A receptor agonists with N-2-methoxybenzyl partial structure. SC. D. Thesis, Freie Universität, Berlin, 1 Jan 2004. 3.9 MB. In German.

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133 #32

Anon. JW, Personal communication of unpublished research. 1 Dec 2011.

Braden, MR; Parrish, JC; Naylor, JC; Nichols, DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol. Pharmacol., 1 Jan 2006, 70 (6), 1956–1964. 361 kB. https://doi.org/10.1124/mol.106.028720

Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. https://doi.org/10.1007/s10822-010-9400-2

Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB.

Hansen, M. Design and synthesis of selective serotonin receptor agonists for positron emission tomography imaging of the brain. Ph. D. Thesis, University of Copenhagen, 16 Dec 2012. 7.9 MB.

Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.

Casale, JF; Hays, PA. Characterization of eleven 2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (NBOMe) derivatives and differentiation from their 3- and 4-methoxybenzyl analogues—Part I. Microgram J., 1 Jan 2012, 9 (2), 84–109. 4.6 MB.

Ettrup, A; Palner, M; Gillings, N; Santini, MA; Hansen, M; Kornum, BR; Rasmussen, LK; Nagren, K; Madsen, J; Begtrup, M; Knudsen, GM. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET. J. Nucl. Med., 1 Nov 2010, 51 (11), 1763–1770. 548 kB. https://doi.org/10.2967/jnumed.109.074021

Heim, R; Elz, S. Novel extremely potent partial 5-HT2A-receptor agonists: Successful application of a new structure-activity concept. Arch. Pharm. Pharm. Med. Chem., Mar 2000, 333 (Suppl. 1), 18. 566 kB. Poster abstract

Heim, R; Pertz, HH; Elz, MZS. Stereoselective synthesis, absolute configuration and 5-HT2A-receptor agonism of chiral 2-methoxybenzylamines. Arch. Pharm. Pharm. Med. Chem., Oct 2002, 335 (Suppl. 1), 82. 573 kB. Poster abstract

EMCDDA. Report on the risk assessment of 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25I-NBOMe), European Monitoring Centre for Drugs and Drug Addiction, Apr 2014. 500 kB.

Elz, S; Kläß, T; Heim, R; Warnke, U; Pertz, HH. Development of highly potent partial agonists and chiral antagonists as tools for the study of 5-HT2A-receptor mediated functions. N-S. Arch. Pharmacol., 2002, 365 (Suppl. 1), R29. 630 kB. #5

Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. https://doi.org/10.1007/s11064-014-1253-y

Nichols, DE; Sassano, MF; Halberstadt, AL; Klein, LM; Brandt, SD; Elliott, SP; Fiedler, WJ. N-Benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem. Neurosci., 15 Jul 2015, 6 (7), 1165-1175. 406 kB. https://doi.org/10.1021/cn500292d

Brandt, SD; Elliott, SP; Kavanagh, PV; Dempster, NM; Meyer, MR; Maurer, HH; Nichols, DE. Analytical characterization of bioactive N-benzyl-substituted phenethylamines and 5-methoxytryptamines. Rapid Commun. Mass Spectrom., 2 Mar 2015, 29 (7), 573–584. 2.2 MB. https://doi.org/10.1002/rcm.7134

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. BLOTTER, 1 Aug 2015, 1 (1). 2.6 MB. https://doi.org/10.16889/isomerdesign-1 Open access DOI

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. Supplementary Data. BLOTTER, 1 Aug 2015, 1 (1). 11.9 MB. https://doi.org/10.16889/isomerdesign-1-supp Open access DOI

Hays, PA; Casale, JF. Characterization of eleven 2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (NBOMe) derivatives and differentiation from their 3-and 4-methoxybenzyl analogues - Part II. Microgram J., 1 Jan 2014, 11 (1–4), 3–22. 8.1 MB.

Prabhakaran, J; Underwood, MD; Kumar, JSD; Simpson, NR; Kassir, SA; Bakalian, MJ; Mann, JJ; Arango, V. Synthesis and in vitro evaluation of [18F]FECIMBI-36: A potential agonist PET ligand for 5-HT2A/2C receptors. Bioorg. Med. Chem. Lett., 15 Sep 2015, 25 (18), 3933–3936. 603 kB. https://doi.org/10.1016/j.bmcl.2015.07.034

Kaizaki-Mitsumoto, A; Noguchi, N; Yamaguchi, S; Odanaka, Y; Matsubayashi, S; Kumamoto, H; Fukuhara, K; Funada, M; Wada, K; Numazawa, S. Three 25-NBOMe-type drugs, three other phenethylamine-type drugs (25I-NBMD, RH34, and escaline), eight cathinone derivatives, and a phencyclidine analog MMXE, newly identified in ingredients of drug products before they were sold on the drug market. Forensic Toxicol., 1 Jan 2016, 34 (1), 108–114. 854 kB. https://doi.org/10.1007/s11419-015-0293-6

Nielsen, LM; Holm, NB; Leth-Petersen, S; Kristensen, JL; Olsen, L; Linnet, K. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test. Analysis, 1 May 2017, 9 (5), 671-679. 553 kB. https://doi.org/10.1002/dta.2031

Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Current Topics in Behavioral Neurosciences; , 2016; pp 1–29. 826 kB. https://doi.org/10.1007/7854_2016_64

Halberstadt, AL; Geyer, MA. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology, 1 Feb 2014, 77, 200–207. 1.4 MB. https://doi.org/10.1016/j.neuropharm.2013.08.025

Wohlfarth, A; Roman, M; Andersson, M; Kugelberg, FC; Diao, X; Carlier, J; Eriksson, C; Wu, X; Konradsson, P; Josefsson, M; Huestis, MA; Kronstrand, R. 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry. Drug Test. Analysis, 1 May 2017, 9 (5), 680-698. 837 kB. https://doi.org/10.1002/dta.2044

Hyperlab. Hyperlab new compounds. 29 Sep 2014. 232 kB. Note: Contains links to hyperlab.info that require elevated access/karma to follow.

Edmunds, R; Donovan, R; Reynolds, D. The analysis of illicit 25X-NBOMe seizures in Western Australia. Drug Test. Analysis, 1 Apr 2018, 10 (4), 786-790. 507 kB. https://doi.org/10.1002/dta.2260

Martins, D; Barratt, MJ; Pires, CV; Carvalho, H; Ventura, M; Fornís, I; Valente, H. The detection and prevention of unintentional consumption of DOx and 25x-NBOMe at Portugal’s Boom Festival. Hum. Psychopharmacol. Clin. Exp., 1 May 2017, 32 (3), e2608. 400 kB. https://doi.org/10.1002/hup.2608

EMCDDA. New drugs in Europe, 2012, European Monitoring Centre for Drugs and Drug Addiction, 1 May 2013. 773 kB. #32

Nichols, DE; Grob, CS. Is LSD toxic? Forensic Sci. Int., 1 Mar 2018, 284 141–145. 415 kB. https://doi.org/10.1016/j.forsciint.2018.01.006

Jensen, AA; McCorvy, JD; Leth-Petersen, S; Bundgaard, C; Liebscher, G; Kenakin, TP; Bräuner-Osborne, H; Kehler, J; Kristensen, JL. Detailed characterization of the in vitro pharmacological and pharmacokinetic properties of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine (25CN-NBOH), a highly selective and brain-penetrant 5-HT2A receptor agonist. J. Pharmacol. Exp. Ther., 1 Jun 2017, 361 (3), 441–453. 4.1 MB. https://doi.org/10.1124/jpet.117.239905 #25I-NBOMe

McGonigal, MK; Wilhide, JA; Smith, PB; Elliott, NM; Dorman, FL. Analysis of synthetic phenethylamine street drugs using direct sample analysis coupled to accurate mass time of flight mass spectrometry. Forensic Sci. Int., 1 Jun 2017, 275 83–89. 2.3 MB. https://doi.org/10.1016/j.forsciint.2017.02.025 #25I-NBOMe

Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #25I-NBOMe

EMCDDA. New drugs in Europe, 2014, European Monitoring Centre for Drugs and Drug Addiction, 1 Jul 2015. 879 kB.

EMCDDA. New drugs in Europe, 2013, European Monitoring Centre for Drugs and Drug Addiction, 1 Jul 2014. 311 kB.

Zawilska, JB; Andrzejczak, D. Next generation of novel psychoactive substances on the horizon – A complex problem to face. Drug Alcohol Depend., 1 Jan 2015, 157, 1-17. 3.0 MB. https://doi.org/10.1016/j.drugalcdep.2015.09.030

Hansen, M; Phonekeo, K; Paine, JS; Leth-Petersen, S; Begtrup, M; Bräuner-Osborne, H; Kristensen, JL. Synthesis and structure–activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem. Neurosci., 19 Mar 2014, 5 (3), 243-249. 21.5 MB. https://doi.org/10.1021/cn400216u #1a

Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #72

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Rychert, M; Wilkins, C. What products are considered psychoactive under New Zealand's legal market for new psychoactive substances (NPS, ‘legal highs’)? Implications for law enforcement and penalties. Drug Test. Analysis, 1 Aug 2016, 8 (8), 768-778. 493 kB. https://doi.org/10.1002/dta.1943

Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)

King, LA. New phenethylamines in Europe. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570

Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610

Poklis, JL; Devers, KG; Arbefeville, EF; Pearson, JM; Houston, E; Poklis, A. Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci. Int., 1 Jan 2014, 234, e14-e20. 826 kB. https://doi.org/10.1016/j.forsciint.2013.10.015

Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #65

Lum, BJ; Brophy, JJ; Hibbert, DB. Identification of 4-substituted 2-(4-x-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25X-NBOMe) and analogues by gas chromatography–mass spectrometry analysis of heptafluorobutyric anhydride (HFBA) derivatives. Aust. J. Forensic Sci., 2 Jan 2016, 48 (1), 59–73. 5.5 MB. https://doi.org/10.1080/00450618.2015.1026274 #25I-NBOMe

Adamowicz, P; Zuba, D. Discrimination among designer drug isomers by chromatographic and spectrometric methods. In Chromatographic Techniques in the Forensic Analysis of Designer Drugs; Kowalska, T; Sajewicz, M; Sherma, J, Eds., CRC Press, Taylor & Francis Group, 1 Jan 2018; pp 211–232. 1.1 MB.

Laskowski, LK; Elbakoush, F; Calvo, J; Exantus-Bernard, G; Fong, J; Poklis, JL; Poklis, A; Nelson, LS. Evolution of the NBOMes: 25C- and 25B- Sold as 25I-NBOMe. J. Med. Toxicol., 1 Jun 2015, 11 (2), 237–241. 482 kB. https://doi.org/10.1007/s13181-014-0445-9 #25I-NBOMe

Poklis, JL; Raso, SA; Alford, KN; Poklis, A; Peace, MR. Analysis of 25I-NBOMe, 25B-NBOMe, 25C-NBOMe and other dimethoxyphenyl-N-[(2-methoxyphenyl)methyl]ethanamine derivatives on blotter paper. J. Anal. Toxicol., 1 Oct 2015, 39 (8), 617–623. 495 kB. https://doi.org/10.1093/jat/bkv073 #25I-NBOMe

Souza, GA; Arantes, LC; Guedes, TJ; de Oliveira, AC; Marinho, PA; Muñoz, RAA; dos Santos, WTP. Voltammetric signatures of 2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamines on boron-doped diamond electrodes: Detection in blotting paper samples. Electrochem. Commun., 1 Sep 2017, 82 121–124. 748 kB. https://doi.org/10.1016/j.elecom.2017.08.001 #25I-NBOMe other

Baumeister, D; Barnes, G; Giaroli, G; Tracy, D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther. Adv. Psychopharmacol., 1 Aug 2014, 4 (4), 156–169. 1.1 MB. https://doi.org/10.1177/2045125314527985 #25I-NBOMe

16 November 2018 · Creative Commons BY-NC-SA ·