Exploring 2C-I. To explore a different substance…

Names:
2C-I
25I
Cimbi-88
2,5-Dimethoxy-4-iodophenethylamine
4-Iodo-2,5-dimethoxyphenethylamine
IUPAC name:
2-(4-Iodo-2,5-dimethoxyphenyl)ethan-1-amine
33 · C10H14INO2 · 307.128
InChI=1S/C10H14INO2/c1-13-9-6-8(11)10(14-2)5-7(9)3-4-12/h5-6H,3-4,12H2,1-2H3
PQHQBRJAAZQXHL-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Braun, U; Shulgin, AT; Braun, G; Sargent, T. Synthesis and body distribution of several iodine-131-labeled central nervous system active drugs. J. Med. Chem., 1 Jan 1977, 20 (12), 1543–1546. 1.1 MB. https://doi.org/10.1021/jm00222a001

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB.

Ettrup, A; Hansen, M; Santini, MA; Paine, J; Gillings, N; Palner, M; Lehel, S; Herth, MM; Madsen, J; Kristensen, JL; Begtrup, M; Knudsen, GM. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur. J. Nucl. Med. Mol. Imaging, 1 Apr 2011, 38 (4), 681–693. 752 kB. https://doi.org/10.1007/s00259-010-1686-8

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133

Meyers-Riggs, B. The halogenated 2Cs. countyourculture, countyourculture: rational exploration of the underground, 29 Sep 2010.

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. https://doi.org/10.1124/jpet.106.117507

Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. https://doi.org/10.1038/sj.bjp.0704747

Braden, MR; Nichols, DE. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol. Pharmacol., 1 Jan 2007, 72 (5), 1200–1209. 487 kB. https://doi.org/10.1124/mol.107.039255

Braden, MR; Parrish, JC; Naylor, JC; Nichols, DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol. Pharmacol., 1 Jan 2006, 70 (6), 1956–1964. 361 kB. https://doi.org/10.1124/mol.106.028720

Glennon, RA; Kier, LB; Shulgin, AT. Molecular connectivity analysis of hallucinogenic mescaline analogs. J. Pharm. Sci., 1 Jan 1979, 68 (7), 906–907. 252 kB. https://doi.org/10.1002/jps.2600680733

Johnson, MP; Mathis, CA; Shulgin, AT; Hoffman, AJ; Nichols, DE. [125I]-2-(2,5-Dimethoxy-4-iodophenyl)aminoethane ([125I]-2C-I) as a label for the 5-HT2 receptor in rat frontal cortex. Pharmacol. Biochem. Behav., 1 Jan 1990, 35 (1), 211–217. 724 kB. https://doi.org/10.1016/0091-3057(90)90228-A

Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.

Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB.

Theobald, DS. The 2C-series—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 18 Dec 2006. 1.4 MB.

Parrish, JC; Braden, MR; Gundy, E; Nichols, DE. Differential phospholipase C activation by phenylalkylamine serotonin 5-HT2A receptor agonists. J. Neurochem., 1 Dec 2005, 95 (6), 1575–1584. 301 kB. https://doi.org/10.1111/j.1471-4159.2005.03477.x

Anon. Report on the risk assessment of 2C-I, 2C-T-2 and 2C-T-7, European Monitoring Centre for Drugs and Drug Addiction, May 2004. 1.2 MB.

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci., 2008, 54 (1), 89–96. 1.9 MB. https://doi.org/10.1248/jhs.54.89

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003

McGrane, O; Simmons, J; Jacobsen, E; Skinner, C. Alarming trends in a novel class of designer drugs. J. Clinic. Toxicol., 1 Nov 2011, 1 (2). 775 kB. https://doi.org/10.4172/2161-0495.1000108

Villalobos, CA; Bull, P; Sáez, P; Cassels, BK; Huidobro-Toro, JP. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br. J. Pharmacol., 1 Apr 2004, 141 (7), 1167–1174. 271 kB. https://doi.org/10.1038/sj.bjp.0705722

Kanai, K; Takekawa, K; Kumamoto, T; Ishikawa, T; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol., 1 Nov 2008, 26 (2), 6–12. 406 kB. https://doi.org/10.1007/s11419-008-0041-2

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Meyer, MR; Robert, A; Maurer, HH. Toxicokinetics of novel psychoactive substances: Characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs. Toxicol. Lett., 5 Jun 2014, 227 (2), 124–128. 865 kB. https://doi.org/10.1016/j.toxlet.2014.03.010

Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. https://doi.org/10.1007/s11064-014-1253-y

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. BLOTTER, 1 Aug 2015, 1 (1). 2.6 MB. https://doi.org/10.16889/isomerdesign-1 Open access DOI

Chapman, SJ; Avanes, AA. PeakAL: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra. Supplementary Data. BLOTTER, 1 Aug 2015, 1 (1). 11.9 MB. https://doi.org/10.16889/isomerdesign-1-supp Open access DOI

Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Current Topics in Behavioral Neurosciences; , 2016; pp 1–29. 826 kB. https://doi.org/10.1007/7854_2016_64

Halberstadt, AL; Geyer, MA. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology, 1 Feb 2014, 77, 200–207. 1.4 MB. https://doi.org/10.1016/j.neuropharm.2013.08.025

Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, , 50, 63-82. 627 kB. Retrieved from http://www.customs.go.jp/ccl_search/e_info_search/drugs/r_50_08_e.pdf

Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #2C-I

McGonigal, MK; Wilhide, JA; Smith, PB; Elliott, NM; Dorman, FL. Analysis of synthetic phenethylamine street drugs using direct sample analysis coupled to accurate mass time of flight mass spectrometry. Forensic Sci. Int., 1 Jun 2017, 275 83–89. 2.3 MB. https://doi.org/10.1016/j.forsciint.2017.02.025 #2C-I

Theobald, DS; Maurer, HH. Identification of monoamine oxidase and cytochrome P450 isoenzymes involved in the deamination of phenethylamine-derived designer drugs (2C-series). Biochem. Pharmacol., 1 Jan 2007, 73 (2), 287–297. 365 kB. https://doi.org/10.1016/j.bcp.2006.09.022 #2C-I

Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Analysis, 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315

Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #Table 2: H

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Montenarh, D; Hopf, M; Warth, S; Maurer, HH; Schmidt, P; Ewald, AH. A simple extraction and LC-MS/MS approach for the screening and identification of over 100 analytes in eight different matrices: Detection of 130 analytes in eight biosamples using only one LC-MS/MS method. Drug Test. Analysis, 1 Mar 2015, 7 (3), 214-240. 593 kB. https://doi.org/10.1002/dta.1657

King, LA. New phenethylamines in Europe. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570

Burns, L; Roxburgh, A; Matthews, A; Bruno, R; Lenton, S; Van Buskirk, J. The rise of new psychoactive substance use in Australia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 846-849. 422 kB. https://doi.org/10.1002/dta.1626

Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610

Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1994; pp 74–91. 51 kB.

Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1994; pp 3–41. 6.9 MB. #42

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB. #10f

Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 27–37. 497 kB. Rhodium.

ψ-2C-I
21 July 2018 · Creative Commons BY-NC-SA ·