Exploring 2C-B. To explore a different substance…

Names:
2C-B · 4-Bromo-2,5-dimethoxyphenethylamine
IUPAC name:
2-(4-Bromo-2,5-dimethoxyphenyl)ethan-1-amine
ID: 20 · Formula: C10H14BrNO2 · Molecular weight: 260.128
InChI: InChI=1S/C10H14BrNO2/c1-13-9-6-8(11)10(14-2)5-7(9)3-4-12/h5-6H,3-4,12H2,1-2H3

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. http://dx.doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. http://dx.doi.org/10.1002/cmdc.200800133

Power, JD; Kavanagh, P; O’Brien, J; Barry, M; Twamley, B; Talbot, B; Dowling, G; Brandt, SD. Test purchase, identification and synthesis of 2-amino-1-(4-bromo-2, 5-dimethoxyphenyl)ethan-1-one (bk-2C-B). Drug Test. Analysis, 1 Jun 2015, 7 (6), n/a. 860 kB. http://dx.doi.org/10.1002/dta.1699

Texter, KB; Waymach, R; Kavanagh, PV; O’Brien, JE; Talbot, B; Brandt, SD; Gardner, EA. Identification of pyrolysis products of the new psychoactive substance 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) and its iodo analogue bk-2C-I. Drug Test. Analysis, 31 May 2017, n/a-n/a. 998 kB. http://dx.doi.org/10.1002/dta.2200

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. http://dx.doi.org/10.1002/dta.413

Glennon, RA; Kier, LB; Shulgin, AT. Molecular connectivity analysis of hallucinogenic mescaline analogs. J. Pharm. Sci., 1 Jan 1979, 68 (7), 906–907. 252 kB. http://dx.doi.org/10.1002/jps.2600680733

Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Current Topics in Behavioral Neurosciences; , 2016; pp 1–29. 826 kB. http://dx.doi.org/10.1007/7854_2016_64

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Páleníček, T; Fujáková, M; Brunovský, M; Horáček, J; Gorman, I; Balíková, M; Rambousek, L; Syslová, K; Kačer, P; Zach, P; Bubeníková-Valešová, V; Tylš, F; Kubešová, A; Puskarčíková, J; Hõschl, C. Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology, 1 Jan 2013, 225 (1), 75–93. 1.1 MB. http://dx.doi.org/10.1007/s00213-012-2797-7

Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. http://dx.doi.org/10.1007/s10822-010-9400-2

Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. http://dx.doi.org/10.1007/s11064-014-1253-y

Kanai, K; Takekawa, K; Kumamoto, T; Ishikawa, T; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol., 1 Nov 2008, 26 (2), 6–12. 406 kB. http://dx.doi.org/10.1007/s11419-008-0041-2

Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. http://dx.doi.org/10.1016/0014-2999(82)90454-X

White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. http://dx.doi.org/10.1016/0027-5107(77)90210-X

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. http://dx.doi.org/10.1016/j.bmc.2003.10.027

Lewin, AH; Navarro, HA; Mascarella, SW. Structure-activity correlations for β-phenethylamines at human trace amine receptor 1. Bioorg. Med. Chem., 1 Aug 2008, 16 (15). 366 kB. http://dx.doi.org/10.1016/j.bmc.2008.06.009

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. http://dx.doi.org/10.1016/j.forsciint.2011.11.003

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. http://dx.doi.org/10.1016/j.neuropharm.2011.01.017

Carmo, H; Hengstler, JG; de Boer, D; Ringel, M; Remião, F; Carvalho, F; Fernandes, E; dos Reys, LA; Oesch, F; de Lourdes Bastos, M. Metabolic pathways of 4-bromo-2,5-dimethoxyphenethylamine (2C-B): analysis of phase I metabolism with hepatocytes of six species including human. Toxicology, 5 Jan 2005, 206 (1), 75–89. 273 kB. http://dx.doi.org/10.1016/j.tox.2004.07.004

Meyer, MR; Robert, A; Maurer, HH. Toxicokinetics of novel psychoactive substances: Characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs. Toxicol. Lett., 5 Jun 2014, 227 (2), 124–128. 865 kB. http://dx.doi.org/10.1016/j.toxlet.2014.03.010

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. http://dx.doi.org/10.1021/jm00082a014

McLean, TH; Parrish, JC; Braden, MR; Marona-Lewicka, D; Gallardo-Godoy, A; Nichols, DE. 1-Aminomethylbenzocycloalkanes: Conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J. Med. Chem., 1 Jan 2006, 49 (19), 5794–5803. 522 kB. http://dx.doi.org/10.1021/jm060656o

de Boer, D; Bosman, I. A new trend in drugs-of-abuse; the 2C-series of phenethylamine designer drugs. Pharm. World Sci., 1 Apr 2004, 26 (2), 110–113. 61 kB. http://dx.doi.org/10.1023/B:PHAR.0000018600.03664.36

Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. http://dx.doi.org/10.1038/sj.bjp.0704747

Villalobos, CA; Bull, P; Sáez, P; Cassels, BK; Huidobro-Toro, JP. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br. J. Pharmacol., 1 Apr 2004, 141 (7), 1167–1174. 271 kB. http://dx.doi.org/10.1038/sj.bjp.0705722

de Boer, D; Gijzels, MJ; Bosman, IJ; Maes, RAA. More data about the new psychoactive drug 2C-B. J. Anal. Toxicol., 1 Jul 1999, 23 (3), 227–228. 190 kB. http://dx.doi.org/10.1093/jat/23.3.227

Parrish, JC; Braden, MR; Gundy, E; Nichols, DE. Differential phospholipase C activation by phenylalkylamine serotonin 5-HT2A receptor agonists. J. Neurochem., 1 Dec 2005, 95 (6), 1575–1584. 301 kB. http://dx.doi.org/10.1111/j.1471-4159.2005.03477.x

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. http://dx.doi.org/10.1111/j.2042-7158.1985.tb03072.x

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. http://dx.doi.org/10.1124/jpet.106.117507

Caudevilla-Gálligo, F; Riba, J; Ventura, M; González, D; Farré, M; Barbanoj, MJ; Carlos Bouso, J. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): presence in the recreational drug market in Spain, pattern of use and subjective effects. J. Psychopharmacol., 1 Jul 2012, 26 (7), 1026–1035. 586 kB. http://dx.doi.org/10.1177/0269881111431752

Katagi, M; Tsuchihashi, H. Update on clandestine amphetamines and their analogues recently seen in Japan. J. Health Sci., 2002, 48 (1), 14–21. 181 kB. http://dx.doi.org/10.1248/jhs.48.14

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci., 2008, 54 (1), 89–96. 1.9 MB. http://dx.doi.org/10.1248/jhs.54.89

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. http://dx.doi.org/10.1371/journal.pone.0009019

Isberg, V; Paine, J; Leth-Petersen, S; Kristensen, JL; Gloriam, DE. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors. PLoS ONE, 7 Nov 2013, 8 (11), e78515. 1.7 MB. http://dx.doi.org/10.1371/journal.pone.0078515

McGrane, O; Simmons, J; Jacobsen, E; Skinner, C. Alarming trends in a novel class of designer drugs. J. Clinic. Toxicol., 1 Nov 2011, 1 (2). 775 kB. http://dx.doi.org/10.4172/2161-0495.1000108

Meyers-Riggs, B. The halogenated 2Cs. countyourculture, countyourculture: rational exploration of the underground, 29 Sep 2010.

Shulgin, AT. 2,5-Dimethoxy-4-bromophenethylamine (2C-B). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 7 Feb 2003.

Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.

Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.

Shulgin, AT; Carter, MF. Centrally active phenethylamines. Psychopharmacol. Commun., 1 Jan 1975, 1 (1), 93–98. 6.2 MB. Rhodium.

Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB.

Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB.

Theobald, DS. The 2C-series—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 18 Dec 2006. 1.4 MB.

25B-NB2OMe · 25B-NBOMe
25B-NPhBu
25B-NB4OMe
25B-NBpNO2
25B-NBpNH2
25B-NBpMe
25B-NBpI
25B-NBpBr
25B-NBpCl
25B-NBpF
25B-NB
25B-NPhPr
N-Ethyl-2C-B · 2C-B-E
2C-B-MM
2C-B-M
25B-NBOTFM
25B-NBOMe-NMe
25B-NBOH
2C-B-OH
25B-NBMD
25B-NBOMe2Me
25B-NEPOMe
25B-NBOH3OMe
25B-NB25OMe
25B-NB24OMe
25B-NBPyrrole
25B-NBFuran
25B-NBF3OMe
25B-NB26OMe
25B-NB23OMe
25B-NBThiophene
25B-NBPyrazole
25B-NBOxolane
25B-NB12Oxazole
25B-NBImidazole
25B-NB13Oxazole
25B-NB13Oxazole4
25B-NMe2Pyr
25B-NMe3Pyr
25B-NMe4Pyr
25B-NMe2Pyr2O
25B-NMe3Pyr2OMe
25B-NMe3Pyr2O
25B-NBOMe45Me
25B-NBOMe5Br
25B-NBOMe4Br
25B-NBOMe4Me
25B-NBOMe4Et
25B-NBOMe4Pr
25B-NBOMe4IB
25B-NBOMe5MeOH
25B-NBOMe5EtOH
25B-NBF
25B-NB3OMe
25B-NNBOMe · 25B-N(BOMe)2
25B-NBFuran2
25B-NBOH3CN
941
942
25B-NBOMe45F
25B-NBOMe4F
25B-NBOMe5F
25B-NBODFM
25B-NB3OH
DOB
4C-DOB
α-Carboxy-2C-B
BOB
BOBE
BOHB
2C-B-2-EtO · 2CB-2ETO
2DF-2C-B
2C-C
2C-D
2C-E
2C-F
2C-H
2C-I
2C-N
2C-O-4
2C-P
2C-SE
2C-T
2C-T-2
2C-T-4
2C-T-7
2C-T-8
2C-T-9
2C-T-13
2C-T-15
2C-T-17
2C-T-21
TMPEA
2C-CN
2C-CA · 2C-COOH
2C-TFM
2C-O-2
2C-O-7
2C-O-19
2C-SE-2
2C-SE-4
2C-SE-7
2C-SE-21
2C-TE
2C-T-10
2C-T-11
2C-T-12
2C-T-14
2C-T-5
2C-T-16
2C-T-6
2C-T-19
2C-T-21.5
2C-T-22
2C-T-18
2C-T-23
2C-YN
2C-pEtOH
2C-pKet
2C-T-3
2C-T-25
2C-T-27
2C-T-28
2C-T-30
2C-T-31
2C-T-32
2C-T-33
2C-VI
2C-BI-1
2C-BI-2
2C-BI-3
2C-BI-4
2C-BI-5
2C-BI-6
2C-BI-7
2C-BI-8
2C-BI-9
2C-BI-10
2C-BI-11
2C-BI-12
2326
2324
2327
2C-IP
2C-EF
2C-NH
2C-HM
2C-IB
2C-TFE
2C-O-22
2C-O-21.5
2C-O-21
2C-A
2C-B-5-H · 4-Br-2-MPEA
2C-B-5-EtO
TCB-2
2CB-Ind
2CLisaB
pip-2C-B
2C-B-BZP
2CBecca
2CJP
BBOX
1234
1236
1237
DMBMPP
1075
bk-2C-B
938
737
2,4,5-BMM · 6-Br-DMPEA
3,4,5-MBM · 4-Br-3,5-DMPEA
2,4,6-MBM · ψ-2C-B
2,3,4-MMB
2,3,4-MBM
2,3,4-BMM
2,3,5-MMB
2,4,5-MMB
3,4,5-BMM
2,3,6-MMB
2,3,6-MBM
2,3,6-BMM
2,4,6-BMM
25B-NB2OMe · 25B-NBOMe
25B-NPhBu
25B-NB4OMe
25B-NBpNO2
25B-NBpNH2
25B-NBpMe
25B-NBpI
25B-NBpBr
25B-NBpCl
25B-NBpF
25B-NB
25B-NPhPr
N-Ethyl-2C-B · 2C-B-E
2C-B-MM
2C-B-M
25B-NBOTFM
25B-NBOMe-NMe
25B-NBOH
2C-B-OH
25B-NBMD
25B-NBOMe2Me
25B-NEPOMe
25B-NBOH3OMe
25B-NB25OMe
25B-NB24OMe
25B-NBPyrrole
25B-NBFuran
25B-NBF3OMe
25B-NB26OMe
25B-NB23OMe
25B-NBThiophene
25B-NBPyrazole
25B-NBOxolane
25B-NB12Oxazole
25B-NBImidazole
25B-NB13Oxazole
25B-NB13Oxazole4
25B-NMe2Pyr
25B-NMe3Pyr
25B-NMe4Pyr
25B-NMe2Pyr2O
25B-NMe3Pyr2OMe
25B-NMe3Pyr2O
25B-NBOMe45Me
25B-NBOMe5Br
25B-NBOMe4Br
25B-NBOMe4Me
25B-NBOMe4Et
25B-NBOMe4Pr
25B-NBOMe4IB
25B-NBOMe5MeOH
25B-NBOMe5EtOH
25B-NBF
25B-NB3OMe
25B-NNBOMe · 25B-N(BOMe)2
25B-NBFuran2
25B-NBOH3CN
941
942
25B-NBOMe45F
25B-NBOMe4F
25B-NBOMe5F
25B-NBODFM
25B-NB3OH
DOB
4C-DOB
α-Carboxy-2C-B
BOB
BOBE
BOHB
2C-B-2-EtO · 2CB-2ETO
2DF-2C-B
2C-C
2C-D
2C-E
2C-F
2C-H
2C-I
2C-N
2C-O-4
2C-P
2C-SE
2C-T
2C-T-2
2C-T-4
2C-T-7
2C-T-8
2C-T-9
2C-T-13
2C-T-15
2C-T-17
2C-T-21
TMPEA
2C-CN
2C-CA · 2C-COOH
2C-TFM
2C-O-2
2C-O-7
2C-O-19
2C-SE-2
2C-SE-4
2C-SE-7
2C-SE-21
2C-TE
2C-T-10
2C-T-11
2C-T-12
2C-T-14
2C-T-5
2C-T-16
2C-T-6
2C-T-19
2C-T-21.5
2C-T-22
2C-T-18
2C-T-23
2C-YN
2C-pEtOH
2C-pKet
2C-T-3
2C-T-25
2C-T-27
2C-T-28
2C-T-30
2C-T-31
2C-T-32
2C-T-33
2C-VI
2C-BI-1
2C-BI-2
2C-BI-3
2C-BI-4
2C-BI-5
2C-BI-6
2C-BI-7
2C-BI-8
2C-BI-9
2C-BI-10
2C-BI-11
2C-BI-12
2326
2324
2327
2C-IP
2C-EF
2C-NH
2C-HM
2C-IB
2C-TFE
2C-O-22
2C-O-21.5
2C-O-21
2C-A
2C-B-5-H · 4-Br-2-MPEA
2C-B-5-EtO
TCB-2
2CB-Ind
2CLisaB
pip-2C-B
2C-B-BZP
2CBecca
2CJP
BBOX
1234
1236
1237
DMBMPP
1075
bk-2C-B
938
737
2,4,5-BMM · 6-Br-DMPEA
3,4,5-MBM · 4-Br-3,5-DMPEA
2,4,6-MBM · ψ-2C-B
2,3,4-MMB
2,3,4-MBM
2,3,4-BMM
2,3,5-MMB
2,4,5-MMB
3,4,5-BMM
2,3,6-MMB
2,3,6-MBM
2,3,6-BMM
2,4,6-BMM
20 October 2017 · Creative Commons BY-NC-SA ·