Exploring 2C-B. To explore a different substance…

Names:
2C-B
4-Bromo-2,5-dimethoxyphenethylamine
IUPAC name:
2-(4-Bromo-2,5-dimethoxyphenyl)ethan-1-amine
20 · C10H14BrNO2 · 260.128
InChI=1S/C10H14BrNO2/c1-13-9-6-8(11)10(14-2)5-7(9)3-4-12/h5-6H,3-4,12H2,1-2H3
YMHOBZXQZVXHBM-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Shulgin, AT; Carter, MF. Centrally active phenethylamines. Psychopharmacol. Commun., 1 Jan 1975, 1 (1), 93–98. 6.2 MB. Rhodium.

Shulgin, AT. 2,5-Dimethoxy-4-bromophenethylamine (2C-B). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 7 Feb 2003.

Blaazer, AR; Smid, P; Kruse, CG. Structure-activity relationships of phenylalkylamines as agonist ligands for 5-HT2A receptors. ChemMedChem, 15 Sep 2008, 3 (9), 1299–1309. 461 kB. https://doi.org/10.1002/cmdc.200800133

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017

Meyers-Riggs, B. The halogenated 2Cs. countyourculture, countyourculture: rational exploration of the underground, 29 Sep 2010.

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. https://doi.org/10.1124/jpet.106.117507

Acuña-Castillo, C; Villalobos, C; Moya, PR; Sáez, P; Cassels, BK; Huidobro-Toro, JP. Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1 Jun 2002, 136 (4), 510–519. 232 kB. https://doi.org/10.1038/sj.bjp.0704747

McLean, TH; Parrish, JC; Braden, MR; Marona-Lewicka, D; Gallardo-Godoy, A; Nichols, DE. 1-Aminomethylbenzocycloalkanes: Conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J. Med. Chem., 1 Jan 2006, 49 (19), 5794–5803. 522 kB. https://doi.org/10.1021/jm060656o

White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. https://doi.org/10.1016/0027-5107(77)90210-X

Glennon, RA; Kier, LB; Shulgin, AT. Molecular connectivity analysis of hallucinogenic mescaline analogs. J. Pharm. Sci., 1 Jan 1979, 68 (7), 906–907. 252 kB. https://doi.org/10.1002/jps.2600680733

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. https://doi.org/10.1111/j.2042-7158.1985.tb03072.x

Silva, ME; Heim, R; Strasser, A; Elz, S; Dove, S. Theoretical studies on the interaction of partial agonists with the 5-HT2A receptor. J. Comput. Aided Mol. Des., 1 Jan 2011, 25 (1), 51–66. 834 kB. https://doi.org/10.1007/s10822-010-9400-2

Parrish, JC. Toward a molecular understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2006. 5.5 MB.

Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB.

Theobald, DS. The 2C-series—A new class of designer drugs. Ph. D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 18 Dec 2006. 1.4 MB.

Silva, ME. Theoretical study of the interaction of agonists with the 5-HT2A receptor. Ph. D. Thesis, Universität Regensburg, Regensburg, Germany, 26 Aug 2008. 5.9 MB.

Caudevilla-Gálligo, F; Riba, J; Ventura, M; González, D; Farré, M; Barbanoj, MJ; Carlos Bouso, J. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): presence in the recreational drug market in Spain, pattern of use and subjective effects. J. Psychopharmacol., 1 Jul 2012, 26 (7), 1026–1035. 586 kB. https://doi.org/10.1177/0269881111431752

Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.

de Boer, D; Bosman, I. A new trend in drugs-of-abuse; the 2C-series of phenethylamine designer drugs. Pharm. World Sci., 1 Apr 2004, 26 (2), 110–113. 61 kB. https://doi.org/10.1023/B:PHAR.0000018600.03664.36

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Parrish, JC; Braden, MR; Gundy, E; Nichols, DE. Differential phospholipase C activation by phenylalkylamine serotonin 5-HT2A receptor agonists. J. Neurochem., 1 Dec 2005, 95 (6), 1575–1584. 301 kB. https://doi.org/10.1111/j.1471-4159.2005.03477.x

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci., 2008, 54 (1), 89–96. 1.9 MB. https://doi.org/10.1248/jhs.54.89

Lewin, AH; Navarro, HA; Mascarella, SW. Structure-activity correlations for β-phenethylamines at human trace amine receptor 1. Bioorg. Med. Chem., 1 Aug 2008, 16 (15). 366 kB. https://doi.org/10.1016/j.bmc.2008.06.009

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003

McGrane, O; Simmons, J; Jacobsen, E; Skinner, C. Alarming trends in a novel class of designer drugs. J. Clinic. Toxicol., 1 Nov 2011, 1 (2). 775 kB. https://doi.org/10.4172/2161-0495.1000108

Villalobos, CA; Bull, P; Sáez, P; Cassels, BK; Huidobro-Toro, JP. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes. Br. J. Pharmacol., 1 Apr 2004, 141 (7), 1167–1174. 271 kB. https://doi.org/10.1038/sj.bjp.0705722

Kanai, K; Takekawa, K; Kumamoto, T; Ishikawa, T; Ohmori, T. Simultaneous analysis of six phenethylamine-type designer drugs by TLC, LC-MS, and GC-MS. Forensic Toxicol., 1 Nov 2008, 26 (2), 6–12. 406 kB. https://doi.org/10.1007/s11419-008-0041-2

Páleníček, T; Fujáková, M; Brunovský, M; Horáček, J; Gorman, I; Balíková, M; Rambousek, L; Syslová, K; Kačer, P; Zach, P; Bubeníková-Valešová, V; Tylš, F; Kubešová, A; Puskarčíková, J; Hõschl, C. Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology, 1 Jan 2013, 225 (1), 75–93. 1.1 MB. https://doi.org/10.1007/s00213-012-2797-7

de Boer, D; Gijzels, MJ; Bosman, IJ; Maes, RAA. More data about the new psychoactive drug 2C-B. J. Anal. Toxicol., 1 Jul 1999, 23 (3), 227–228. 190 kB. https://doi.org/10.1093/jat/23.3.227

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. https://doi.org/10.1016/0014-2999(82)90454-X

Katagi, M; Tsuchihashi, H. Update on clandestine amphetamines and their analogues recently seen in Japan. J. Health Sci., 2002, 48 (1), 14–21. 181 kB. https://doi.org/10.1248/jhs.48.14

Carmo, H; Hengstler, JG; de Boer, D; Ringel, M; Remião, F; Carvalho, F; Fernandes, E; dos Reys, LA; Oesch, F; de Lourdes Bastos, M. Metabolic pathways of 4-bromo-2,5-dimethoxyphenethylamine (2C-B): analysis of phase I metabolism with hepatocytes of six species including human. Toxicology, 5 Jan 2005, 206 (1), 75–89. 273 kB. https://doi.org/10.1016/j.tox.2004.07.004

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027

Meyer, MR; Robert, A; Maurer, HH. Toxicokinetics of novel psychoactive substances: Characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs. Toxicol. Lett., 5 Jun 2014, 227 (2), 124–128. 865 kB. https://doi.org/10.1016/j.toxlet.2014.03.010

Leth-Petersen, S; Bundgaard, C; Hansen, M; Carnerup, MA; Kehler, J; Kristensen, JL. Correlating the metabolic stability of psychedelic 5-HT2A agonists with anecdotal reports of human oral bioavailability. Neurochem. Res., 12 Feb 2014, 39 (10), 2018-2023. 625 kB. https://doi.org/10.1007/s11064-014-1253-y

Power, JD; Kavanagh, P; O’Brien, J; Barry, M; Twamley, B; Talbot, B; Dowling, G; Brandt, SD. Test purchase, identification and synthesis of 2-amino-1-(4-bromo-2, 5-dimethoxyphenyl)ethan-1-one (bk-2C-B). Drug Test. Analysis, 1 Jun 2015, 7 (6), n/a. 860 kB. https://doi.org/10.1002/dta.1699

Halberstadt, AL. Pharmacology and Toxicology of N-Benzylphenethylamine (“NBOMe”) Hallucinogens. In Current Topics in Behavioral Neurosciences; , 2016; pp 1–29. 826 kB. https://doi.org/10.1007/7854_2016_64

Texter, KB; Waymach, R; Kavanagh, PV; O’Brien, JE; Talbot, B; Brandt, SD; Gardner, EA. Identification of pyrolysis products of the new psychoactive substance 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethanone hydrochloride (bk-2C-B) and its iodo analogue bk-2C-I. Drug Test. Analysis, 31 May 2017, 10 (1), 229-236. 998 kB. https://doi.org/10.1002/dta.2200

Isberg, V; Paine, J; Leth-Petersen, S; Kristensen, JL; Gloriam, DE. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors. PLoS ONE, 7 Nov 2013, 8 (11), e78515. 2.3 MB. https://doi.org/10.1371/journal.pone.0078515

Papaseit, E; Farré, M; Pérez-Mañá, C; Torrens, M; Ventura, M; Pujadas, M; de la Torre, R; González, D. Acute pharmacological effects of 2C-B in humans: An observational study. Front. Pharmacol., 13 Mar 2018, 9 n/a. 500 kB. https://doi.org/10.3389/fphar.2018.00206

Luethi, D; Trachsel, D; Hoener, MC; Liechti, ME. Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs). Neuropharmacology, 15 Jul 2017, n/a. 478 kB. https://doi.org/10.1016/j.neuropharm.2017.07.012 #2C-B

Rickli, A; Luethi, D; Reinisch, J; Buchy, D; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 1 Dec 2015, 99 546–553. 625 kB. https://doi.org/10.1016/j.neuropharm.2015.08.034 #2C-B

McGonigal, MK; Wilhide, JA; Smith, PB; Elliott, NM; Dorman, FL. Analysis of synthetic phenethylamine street drugs using direct sample analysis coupled to accurate mass time of flight mass spectrometry. Forensic Sci. Int., 1 Jun 2017, 275 83–89. 2.3 MB. https://doi.org/10.1016/j.forsciint.2017.02.025 #2C-B

Nugteren-van Lonkhuyzen, JJ; van Riel, AJHP; Brunt, TM; Hondebrink, L. Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans. Drug Alcohol Depend., 1 Dec 2015, 157 18–27. 483 kB. https://doi.org/10.1016/j.drugalcdep.2015.10.011 #2C-B

Theobald, DS; Maurer, HH. Identification of monoamine oxidase and cytochrome P450 isoenzymes involved in the deamination of phenethylamine-derived designer drugs (2C-series). Biochem. Pharmacol., 1 Jan 2007, 73 (2), 287–297. 365 kB. https://doi.org/10.1016/j.bcp.2006.09.022 #2C-B

EMCDDA. New drugs in Europe, 2011, European Monitoring Centre for Drugs and Drug Addiction, 1 Apr 2012. 401 kB.

Collins, M. Some new psychoactive substances: Precursor chemical and synthesis-driver end-products. Drug Test. Analysis, 1 Jul 2001, 3 (7–8), 404–416. 178 kB. https://doi.org/10.1002/dta.315

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Lladó-Pelfort, L; Celada, P; Riga, M; Troyano-Rodríguez,, E. Effect of hallucinogens on neuronal activity. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 75-105. 902 kB. https://doi.org/10.1007/7854_2017_473

Montenarh, D; Hopf, M; Warth, S; Maurer, HH; Schmidt, P; Ewald, AH. A simple extraction and LC-MS/MS approach for the screening and identification of over 100 analytes in eight different matrices: Detection of 130 analytes in eight biosamples using only one LC-MS/MS method. Drug Test. Analysis, 1 Mar 2015, 7 (3), 214-240. 593 kB. https://doi.org/10.1002/dta.1657

Papoutsis, I; Nikolaou, P; Stefanidou, M; Spiliopoulou, C; Athanaselis, S. 25B-NBOMe and its precursor 2C-B: modern trends and hidden dangers. Forensic Toxicol., 1 Jan 2015, 33 (1), 1-11. 365 kB. https://doi.org/10.1007/s11419-014-0242-9

King, LA. New phenethylamines in Europe. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570

Burns, L; Roxburgh, A; Matthews, A; Bruno, R; Lenton, S; Van Buskirk, J. The rise of new psychoactive substance use in Australia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 846-849. 422 kB. https://doi.org/10.1002/dta.1626

Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610

Helm, K. Synthese und funktionelle In-vitro-Pharmakologie neuer Liganden des 5-HT2A-Rezeptors aus der Klasse. Ph. D. Thesis, Universität Regensburg, Dresden, 1 Jan 2014. 3.2 MB. #57

Cassels, BK; Sáez-Briones, P. Dark classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 8 Jun 2018, n/a. 424 kB. https://doi.org/10.1021/acschemneuro.8b00215

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1994; pp 74–91. 51 kB.

Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1994; pp 3–41. 6.9 MB.

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB. #10e

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #19i

Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 27–37. 497 kB. Rhodium.

Li, Y; Wang, M; Li, A; Zheng, H; Wei, Y. Identification of the impurities in 2,5-dimethoxy-4-ethylphenethylamine tablets by high performance liquid chromatography mass spectrometry-ion trap-time of flight. Anal. Methods, 24 Nov 2016, 8 (46), 8179–8187. 1.1 MB. https://doi.org/10.1039/C6AY02162J #imp 5

Martins, D. Analysis of new psychoactive substances: A contribution to forensic chemistry. M. Sc. Thesis, Universidade do Porto, 1 Jan 2014. #8

Maurer, HH. Chemistry, pharmacology, and metabolism of emerging drugs of abuse. Ther. Drug Monit., 1 Oct 2010, 32 (5), 544–549. 142 kB. https://doi.org/10.1097/FTD.0b013e3181eea318 #2C-B

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #2C-B

Souza, GA; Arantes, LC; Guedes, TJ; de Oliveira, AC; Marinho, PA; Muñoz, RA; dos Santos, WT. Voltammetric signatures of 2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamines on boron-doped diamond electrodes: Detection in blotting paper samples. Electrochem. Commun., 1 Sep 2017, 82 121–124. 748 kB. https://doi.org/10.1016/j.elecom.2017.08.001 #2C-B other

Cole, MD; Lea, C; Oxley, N. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): a review of the public domain literature. Sci. Justice, 1 Oct 2002, 42 (4), 223–224. 2.0 MB. https://doi.org/10.1016/S1355-0306(02)71832-7 #2C-B

Takahashi, M; Miyake, H; Nagashima, M; Seto, T; Miyatake, N; Suzuki, J; Kamimura, H; Yasuda, I. Analysis and synthesis of psychedelic phenethylamines. Ann. Rep. Tokyo Metr. Inst. P. H., 1 Jan 2003, 54 51–55. 276 kB. #2C-B

Monte, AP; Marona-Lewicka, D; Parker, MA; Wainscott, DB; Nelson, DL; Nichols, DE. Dihydrobenzofuran analogues of hallucinogens. 3. 1 Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups. J. Med. Chem., 1 Jan 1996, 39 (15), 2953–2961. 290 kB. https://doi.org/10.1021/jm960199j #2a

Braden, MR. Towards a biophysical understanding of hallucinogen action. Ph. D. Thesis, Purdue University, West Lafayette, IN, 1 Jan 2007. 8.4 MB. #2C-B

2,4,5-BMM · 6-Br-DMPEA
3,4,5-MBM · 4-Br-3,5-DMPEA
2,4,6-MBM · ψ-2C-B
2,3,4-MMB
2,3,4-MBM
2,3,4-BMM
2,3,5-MMB
2,4,5-MMB
3,4,5-BMM
2,3,6-MMB
2,3,6-MBM
2,3,6-BMM
2,4,6-BMM
2-DM-DOB
23 September 2018 · Creative Commons BY-NC-SA ·