Exploring TMA. To explore a different substance…

Names:
TMA
AMM
EA-1319
3,4,5-Trimethoxyamphetamine
IUPAC name:
1-(3,4,5-Trimethoxyphenyl)propan-2-amine
157 · C12H19NO3 · 225.284
InChI=1S/C12H19NO3/c1-8(13)5-9-6-10(14-2)12(16-4)11(7-9)15-3/h6-8H,5,13H2,1-4H3
WGTASENVNYJZBK-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Shulgin, AT. The six trimethoxyphenylisopropylamines (trimethoxyamphetamines). J. Med. Chem., 1 Jan 1966, 9 (3), 445–456. 362 kB. https://doi.org/10.1021/jm00321a058

Peretz, DI; Smythies, JR; Gibson, WC. A new hallucinogen: 3,4,5-Trimethoxyphenyl-β-aminopropane. With notes on the stroboscopic phenomenon. Br. J. Psychiatry, 1 Jan 1955, 101 (423), 317–329. 1.6 MB. https://doi.org/10.1192/bjp.101.423.317

Shulgin, AT. Possible implication of myristicin as a psychotropic substance. Nature, 1 Jan 1966, 210, 380–384. 707 kB. https://doi.org/10.1038/210380a0

Shulgin, AT. Psychotomimetic amphetamines: Methoxy 3,4-dialkoxyamphetamines. Experientia, 1 Jan 1964, 20 (7), 366–367. 240 kB. https://doi.org/10.1007/BF02147960

Shulgin, AT; Bunnell, S; Sargent, T. The psychotomimetic properties of 3,4,5-trimethoxyamphetamine. Nature, 1 Jan 1961, 189, 1011–1012. 306 kB. https://doi.org/10.1038/1891011a0 Rhodium.

Aldous, FAB; Barrass, BC; Brewster, K; Buxton, DA; Green, DM; Pinder, RM; Rich, P; Skeels, PM; Tutt, KJ. Structure-activity relationships in psychotomimetic phenylalkylamines. J. Med. Chem., 1 Oct 1974, 17 (10), 1100–1111. 1.2 MB. https://doi.org/10.1021/jm00256a016

Nelson, DL; Lucaites, VL; Wainscott, DB; Glennon, RA. Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, 5-HT2B and 5-HT2C receptors. N-S. Arch. Pharmacol., 1 Jan 1999, 359 (1), 1–6. 66 kB. https://doi.org/10.1007/PL00005315

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413

Halberstadt, AL; Geyer, MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology, 1 Sep 2011, 61 (3), 364–381. 817 kB. https://doi.org/10.1016/j.neuropharm.2011.01.017

Moya, PR; Berg, KA; Gutiérrez-Hernandez, MA; Sáez-Briones, P; Reyes-Parada, M; Cassels, BK; Clarke, WP. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J. Pharmacol. Exp. Ther., 1 Jun 2007, 321 (3), 1054–1061. 188 kB. https://doi.org/10.1124/jpet.106.117507

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #18

Zaitsu, K; Katagi, M; Kamata, H; Kamata, T; Shima, N; Miki, A; Iwamura, T; Tsuchihashi, H. Discrimination and identification of the six aromatic positional isomers of trimethoxyamphetamine (TMA) by gas chromatography-mass spectrometry (GC-MS). J. Mass Spectrom., 1 Apr 2008, 43 (4), 528–534. 147 kB. https://doi.org/10.1002/jms.1347

Glennon, RA; Dukat, M; Grella, B; Hong, S; Costantino, L; Teitler, M; Smith, C; Egan, C; Davis, K; Mattson, MV. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug Alcohol Depend., 1 Aug 2000, 60 (2), 121–132. 276 kB. https://doi.org/10.1016/S0376-8716(99)00148-9

Shulgin, AT; Sargent, T; Naranjo, C. The chemistry and psychopharmacology of nutmeg and of several related phenylisopropylamines. In Ethnopharmacologic Search for Psychoactive Drugs; Efron, DH; Holmstedt, B; Kline, NS, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 28 Jan 1967; pp 202–215. 951 kB.

Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. https://doi.org/10.1038/221537a0

Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1970; pp 21–41. 8.6 MB.

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 8–15. 457 kB.

Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. https://doi.org/10.1021/jm00144a009

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. https://doi.org/10.1111/j.2042-7158.1985.tb03072.x

Nichols, DE; Barfknecht, CF; Rusterholz, DB; Benington, F; Morin, RD. Asymmetric synthesis of psychotomimetic phenylisopropylamines. J. Med. Chem., 1 Jan 1973, 16 (5), 480–483. 515 kB. https://doi.org/10.1021/jm00263a013

Guy, M; Freeman, S; Alder, JF; Brandt, SD. The Henry reaction: spectroscopic studies of nitrile and hydroxylamine by-products formed during synthesis of psychoactive phenylalkylamines. Cent. Eur. J. Chem., 1 Dec 2008, 6 (4), 526–534. 982 kB. https://doi.org/10.2478/s11532-008-0054-z

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014

Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. https://doi.org/10.1016/S0968-0896(03)00437-1

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Analysis of phenethylamines and tryptamines in designer drugs using gas chromatography-mass spectrometry. J. Health Sci., 2008, 54 (1), 89–96. 1.9 MB. https://doi.org/10.1248/jhs.54.89

Fenderson5555. The trimethoxylated amphetamines (TMA-x). , 9 Dec 2012. . Fenderson5555 7.7 MB.

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003

Weil, AT. The use of nutmeg as a psychotropic agent. Bull. Narc., United Nations Office on Drugs and Crime, 1 Jan 1966.

Bailey, K; Legault, D. 13C NMR spectra and structure of mono-, di- and trimethoxyphenylethylamines and amphetamines. Org. Magn. Resonance, 1 Jun 1983, 21 (6), 391–396. 680 kB. https://doi.org/10.1002/omr.1270210611

Tsujikawa, K; Kanamori, T; Kuwayama, K; Miyaguchi, H; Iwata, YT; Inoue, H. Analytical profiles for 3,4,5-, 2,4,5-, and 2,4,6-trimethoxyamphetamine. Microgram J., 1 Jan 2006, 4 (1–4), 12–23. 162 kB. #TMA-1 GC,LC,MS,NMR,IR,spot

Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. https://doi.org/10.1021/jm00295a007

Antun, F; Smythies, JR; Benington, F; Morin, RD; Barfknecht, CF; Nichols, DE. Native fluorescence and hallucinogenic potency of some amphetamines. Experientia, 15 Jan 1971, 27 (1), 62–63. 248 kB. https://doi.org/10.1007/BF02137743

Pirisi, MA; Nieddu, M; Burrai, L; Carta, A; Briguglio, I; Baralla, E; Demontis, MP; Varoni, MV; Boatto, G. An LC-MS-MS method for quantitative analysis of six trimethoxyamphetamine designer drugs in rat plasma, and its application to a pharmacokinetic study. Forensic Toxicol., 1 Jul 2013, 31 (2), 197–203. 305 kB. https://doi.org/10.1007/s11419-012-0177-y

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Makriyannis, A; Bowerman, D; Sze, PY; Fournier, D; De Jong., AP. Structure activity correlations in the inhibition of brain synaptosomal 3H-norepinephrine uptake by phenethylamine analogs. The role of α-alkyl side chain and methoxyl ring substitutions. Eur. J. Pharmacol., 9 Jul 1982, 81 (2), 337–340. 313 kB. https://doi.org/10.1016/0014-2999(82)90454-X

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027

Glennon, RA; Titeler, M; McKenney, JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci., 17 Dec 1984, 35 (25), 2505–2511. 332 kB. https://doi.org/10.1016/0024-3205(84)90436-3

Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. https://doi.org/10.1016/S0041-008X(73)80016-X

Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB.

Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Analysis, 31 Aug 2017, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292

Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB.

Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #30

Nichols, DE. Chemistry and structure–activity relationships of psychedelics. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 1-43. 2.6 MB. https://doi.org/10.1007/7854_2017_475 #31

Clarke, EGC. The identification of some proscribed psychedelic drugs. J. Forensic Sci. Soc., 1 Jan 1967, 7 (1), 46-50. 336 kB. https://doi.org/10.1016/S0015-7368(67)70370-9

King, LA. New phenethylamines in Europe. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570

Nichols, DE. Structure-activity relationships of serotonin 5-HT2A agonists. WIREs Membr. Transp. Signal, 1 Sep 2012, 1 (5), 559-579. 573 kB. https://doi.org/10.1002/wmts.42 #33

Titeler, M; Lyon, RA; Glennon, RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology, 1 Feb 1988, 94 (2), 213–216. 431 kB. https://doi.org/10.1007/BF00176847 #17

Cassels, BK; Sáez-Briones, P. Dark classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 8 Jun 2018, n/a. 424 kB. https://doi.org/10.1021/acschemneuro.8b00215

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Jacob, P; Shulgin, AT. Structure-activity relationships of the classic hallucinogens and their analogs. In Hallucinogens: An update. NIDA Research Monograph 146; Lin, GC; Glennon, RA, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1994; pp 74–91. 51 kB.

Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1994; pp 3–41. 6.9 MB. #30

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB. #10n

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #22a

Anderson, GM; Castagnoli, N; Kollman, PA. Quantitative structure-activity relationships in the 2,4,5-ring-substituted phenylisopropylamines. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 199–217. 623 kB.

Braun, U; Braun, G; Jacob, P; Nichols, DE; Shulgin, AT. Mescaline Analogs: Substitutions at the 4-Position. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 27–37. 497 kB. Rhodium.

Biel, JH; Bopp, BA. Amphetamines: Structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 1–39. 1.0 MB. https://doi.org/10.1007/978-1-4757-0510-2_1

Shulgin, AT. Psychotomimetic agents. In Psychopharmacological Agents; Gordon, M, Ed., Academic Press, New York, 1976; Vol. 4, pp 59–146. 3.1 MB. #LXI

Nagai, F; Nonaka, R; Kamimura, KSH. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur. J. Pharmacol., 22 Mar 2007, 559 (2), 132–137. 399 kB. https://doi.org/10.1016/j.ejphar.2006.11.075 #TMA

Takahashi, M; Nagashima, M; Suzuki, J; Seto, T; Yasuda, I; Yoshida, T. Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography–mass spectrometry. Talanta, 15 Feb 2009, 77 (4), 1245–1272. 1.2 MB. https://doi.org/10.1016/j.talanta.2008.07.062 #TMA

Hoffer, A; Osmond, H. The Hallucinogens, Academic Press, New York, 1967. 3.9 MB. #3,4,5-Trimethoxyamphetamine

BOD
E
ME
TMA-2
TMA-3
TMA-4
TMA-5
TMA-6
METHYL-MESCALINE
2C-O-2
N,N-Me-3-DESMETHYL
N,N-Me-DME · Macromerine
2C-pEtOH
4C-HO
homo-Mescaline
β-HO-N-iPr-GEA
N-Me-β,3,4-TMPEA
DMMAOH
DEE
β-HO-N,N-Me-2,5-DMPEA
β-HO-β,N-Me-2,5-DMPEA
β-HO-N-Me-2,5-DMA
β,2-HO-N-Me-5-EA
β-HO-2,5-DEPEA
β-HO-N,N-Me-3,5-DMPEA
N-HO-DOM
DESMETHYL-MM
2-Me-M
β-HO-DOM
Hydroxy-DOM
N-MeO-3,4-DMA
Terbutaline
10423
10411
10406
β-Methylmescaline
ψ-2C-O-2
α-Methoxy-2C-D
2C-MOM
HOT-E
1760
23 September 2018 · Creative Commons BY-NC-SA ·