Exploring MDMA. To explore a different substance…

Names:
MDMA · MDM · XTC · X · ADAM · Ecstasy · N-Methyl-3,4-methylenedioxyamphetamine · 3,4-Methylenedioxy-N-methylamphetamine
IUPAC names:
1-(2H-1,3-Benzodioxol-5-yl)-N-methylpropan-2-amine
1-(1,3-Benzodioxol-5-yl)-N-methylpropan-2-amine
ID: 109 · Formula: C11H15NO2 · Molecular weight: 193.242
InChI: InChI=1S/C11H15NO2/c1-8(12-2)5-9-3-4-10-11(6-9)14-7-13-10/h3-4,6,8,12H,5,7H2,1-2H3

Ziporyn, T. A growing industry and menace: makeshift laboratory’s designer drugs. JAMA, 12 Dec 1986, 256 (22), 3061–3063. 486 kB. http://dx.doi.org/10.1001/jama.1986.03380220011003

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. http://dx.doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. http://dx.doi.org/10.1002/cbdv.200690035

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. http://dx.doi.org/10.1002/dta.413

Kapitány-Fövény, M; Kertész, M; Winstock, A; Deluca, P; Corazza, O; Farkas, J; Zacher, G; Urbán, R; Demetrovics, Z. Substitutional potential of mephedrone: an analysis of the subjective effects. Human Psychopharmacology: Clinical and Experimental, 1 Jul 2013, 28 (4), 308–316. 141 kB. http://dx.doi.org/10.1002/hup.2297

Parrott, AC. Human psychobiology of MDMA or “Ecstasy”: an overview of 25 years of empirical research. Human Psychopharmacology: Clinical and Experimental, 1 Jul 2013, 28 (4), 289–307. 363 kB. http://dx.doi.org/10.1002/hup.2318

Doblin, R; Greer, G; Holland, J; Jerome, L; Mithoefer, MC; Sessa, B. A reconsideration and response to Parrott AC (2013) “Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research”. Human Psychopharmacology: Clinical and Experimental, 1 Mar 2014, 29 (2), 105–108. 72 kB. http://dx.doi.org/10.1002/hup.2389

Parrott, AC. MDMA is certainly damaging after 25 years of empirical research: a reply and refutation of Doblin et al. (2014). Human Psychopharmacology: Clinical and Experimental, 1 Mar 2014, 29 (2), 109–119. 144 kB. http://dx.doi.org/10.1002/hup.2390

Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. http://dx.doi.org/10.1002/jps.2600690220

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Oberlender, R; Nichols, DE. Drug discrimination studies with MDMA and amphetamine. Psychopharmacology, 1 May 1988, 95 (1), 71–26. 674 kB. http://dx.doi.org/10.1007/BF00212770

Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. http://dx.doi.org/10.1007/BF03033455

Benzenhõfer, U; Passie, T. Zur Frühgeschichte von “Ecstasy”. Nervenarzt, 2006, 77 (1), 95–96, 98–99. 533 kB. http://dx.doi.org/10.1007/s00115-005-2001-y

Capela, JP; Carmo, H; Remião, F; Bastos, ML; Meisel, A; Carvalho, FG. Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: An overview. Mol. Neurobiol., 1 Jun 2009, 39 (3), 210–271. 1.9 MB. http://dx.doi.org/10.1007/s12035-009-8064-1

Johnson, MP; Hoffman, AJ; Nichols, DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 16 Dec 1986, 132 (2–3), 269–276. 559 kB. http://dx.doi.org/10.1016/0014-2999(86)90615-1

Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. http://dx.doi.org/10.1016/0014-2999(87)90173-7

Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 9–16. 1.1 MB. http://dx.doi.org/10.1016/0014-2999(91)90659-E

Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 53–58. 714 kB. http://dx.doi.org/10.1016/0014-2999(91)90664-C

Huang, X; Nichols, DE. 5-HT2 receptor-mediated potentiation of dopamine synthesis and central serotonergic deficits. Eur. J. Pharmacol., 1 Jan 1993, 238 (2–3), 291–296. 553 kB. http://dx.doi.org/10.1016/0014-2999(93)90859-G

Sprague, JE; Huang, X; Kanthasamy, A; Nichols, DE. Attenuation of 3,4-methylenedioxymethamphetamine (MDMA) induced neurotoxicity with the serotonin precursors tryptophan and 5-hydroxytryptophan. Life Sci., 1 Jan 1994, 55 (15), 1193–1198. 336 kB. http://dx.doi.org/10.1016/0024-3205(94)00658-X

Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. http://dx.doi.org/10.1016/0091-3057(88)90001-9

Steele, TD; Nichols, DE; Yim, GKW. MDMA transiently alters biogenic amines and metabolites in mouse brain and heart. Pharmacol. Biochem. Behav., 1 Jan 1989, 34 (2), 223–227. 477 kB. http://dx.doi.org/10.1016/0091-3057(89)90303-1

Johnson, MP; Nichols, DE. Neurotoxic effects of the alpha-ethyl homologue of MDMA following subacute administration. Pharmacol. Biochem. Behav., 1 Jan 1989, 33 (1), 105–108. 399 kB. http://dx.doi.org/10.1016/0091-3057(89)90437-1

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. http://dx.doi.org/10.1016/0091-3057(91)90005-M

Johnson, MP; Huang, X; Nichols, DE. Serotonin neurotoxicity in rats after combined treatment with a dopaminergic agent followed by a nonneurotoxic 3,4-methylenedioxymethamphetamine (MDMA) analogue. Pharmacol. Biochem. Behav., 1 Jan 1991, 40 (4), 915–922. 845 kB. http://dx.doi.org/10.1016/0091-3057(91)90106-C

Steele, TD; Brewster, WK; Johnson, MP; Nichols, DE; Yim, GKW. Assessment of the role of α-methylepinine in the neurotoxicity of MDMA. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (2), 345–351. 723 kB. http://dx.doi.org/10.1016/0091-3057(91)90289-E

Marona-Lewicka, D; Rhee, G; Sprague, JE; Nichols, DE. Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol. Biochem. Behav., 1 Jan 1996, 53 (1), 99–105. 1.0 MB. http://dx.doi.org/10.1016/0091-3057(95)00205-7

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. http://dx.doi.org/10.1016/S0006-2952(97)00405-X

Lieberman, JA; Mailman, RB; Duncan, G; Sikich, L; Chakos, M; Nichols, DE; Kraus, JE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol. Psychiat., 1 Dec 1998, 44 (11), 1099–1117. 154 kB. http://dx.doi.org/10.1016/S0006-3223(98)00187-5

Cozzi, NV; Sievert, MK; Shulgin, AT; Jacob, P; Ruoho, AE. Inhibition of plasma membrane monoamine transporters by β-ketoamphetamines. Eur. J. Pharmacol., 1 Jan 1999, 381 (1), 63–69. 111 kB. http://dx.doi.org/10.1016/S0014-2999(99)00538-5

Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicology and Applied Pharmacology, 1 Jun 1973, 25 (2), 299–309. 751 kB. http://dx.doi.org/10.1016/S0041-008X(73)80016-X

Falk, EM; Cook, VJ; Nichols, DE; Sprague, JE. An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol. Biochem. Behav., 1 Jan 2002, 72 (3), 617–622. 120 kB. http://dx.doi.org/10.1016/S0091-3057(02)00728-1

Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. http://dx.doi.org/10.1016/S0304-3940(02)00823-6

Eshleman, AJ; Wolfrum, KM; Hatfield, MG; Johnson, RA; Murphy, KV; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol., 15 Jun 2013, 85 (12), 1803–1815. 2.2 MB. http://dx.doi.org/10.1016/j.bcp.2013.04.004

Dybdal-Hargreaves, NF; Holder, ND; Ottoson, PE; Sweeney, MD; Williams, T. Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur. J. Pharmacol., 15 Aug 2013, 714 (1–3), 32–40. 837 kB. http://dx.doi.org/10.1016/j.ejphar.2013.05.024

Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. http://dx.doi.org/10.1016/j.forsciint.2004.06.016

Maher, HM; Awad, T; DeRuiter, J; Clark, CR. GC–IRD methods for the identification of some tertiary amines related to MDMA. Forensic Sci. Int., 15 Jun 2010, 199 (1–3), 18–28. 877 kB. http://dx.doi.org/10.1016/j.forsciint.2010.02.022

Pilgrim, J; Gerostamoulos, D; Woodford, N; Drummer, OH. Serotonin toxicity involving MDMA (ecstasy) and moclobemide. Forensic Sci. Int., 10 Feb 2012, 215 (1–3), 184–188. 189 kB. http://dx.doi.org/10.1016/j.forsciint.2011.04.008

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. http://dx.doi.org/10.1016/j.forsciint.2011.11.003

Stojanovska, N; Fu, S; Tahtouh, M; Kelly, T; Beavis, A; Kirkbride, KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int., 10 Jan 2013, 224 (1–3), 8–26. 813 kB. http://dx.doi.org/10.1016/j.forsciint.2012.10.040

Halpin, LE; Collins, SA; Yamamoto, BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci., 27 Feb 2014, 97 (1), 37–44. 507 kB. http://dx.doi.org/10.1016/j.lfs.2013.07.014

Angoa-Pérez, M; Kane, MJ; Herrera-Mundo, N; Francescutti, DM; Kuhn, DM. Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci., 27 Feb 2014, 97 (1), 31–36. 888 kB. http://dx.doi.org/10.1016/j.lfs.2013.07.015

De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 697 kB. http://dx.doi.org/10.1016/j.lfs.2013.10.029

Passie, T; Hartmann, U; Schneider, U; Emrich, HM; Krüger, TH. Ecstasy (MDMA) mimics the post-orgasmic state: Impairment of sexual drive and function during acute MDMA-effects may be due to increased prolactin secretion. Med. Hypotheses, 2005, 64 (5), 899–903. 110 kB. http://dx.doi.org/10.1016/j.mehy.2004.11.044

Capela, JP; Macedo, C; Branco, PS; Ferreira, LM; Lobo, AM; Fernandes, E; Remião, F; Bastos, ML; Dirnagl, U; Meisel, A; Carvalho, FG. Neurotoxicity mechanisms of thioether Ecstasy metabolites. Neuroscience, 1 Jan 2007, 146, 1743–1757. 995 kB. http://dx.doi.org/10.1016/j.neuroscience.2007.03.028

Selken, J; Nichols, DE. α1-Adrenergic receptors mediate the locomotor response to systemic administration of (±)-3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol. Biochem. Behav., 1 Jan 2007, 86 (4), 622–630. 1.0 MB. http://dx.doi.org/10.1016/j.pbb.2007.02.006

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. http://dx.doi.org/10.1016/j.pbb.2007.06.001

Mohamed, WM; Hamida, SB; Cassel, J; de Vasconcelos, AP; Jones, BC. MDMA: Interactions with other psychoactive drugs. Pharmacol. Biochem. Behav., 1 Oct 2011, 99 (4), 759–774. 396 kB. http://dx.doi.org/10.1016/j.pbb.2011.06.032

Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. http://dx.doi.org/10.1016/j.talanta.2007.06.012

de la Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. http://dx.doi.org/10.1016/j.tips.2004.08.001

Sprague, JE; Nichols, DE. Neurotoxicity of MDMA (ecstasy): beyond metabolism. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 59–60. 60 kB. http://dx.doi.org/10.1016/j.tips.2004.12.001

de la Torre, R; Farré, M; Monks, TJ; Jones, D. Response to Sprague and Nichols: Contribution of metabolic activation to MDMA neurotoxicity. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 60–61. 60 kB. http://dx.doi.org/10.1016/j.tips.2004.12.004

Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Analytical Chemistry, Aug 1975, 47 (9), 841A–844a. 1.6 MB. http://dx.doi.org/10.1021/ac60359a050

Nichols, DE; Hoffman, AJ; Oberlender, RA; Jacob, P; Shulgin, AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: Representatives of a novel therapeutic class. J. Med. Chem., 1 Jan 1986, 29 (10), 2009–2015. 1.0 MB. http://dx.doi.org/10.1021/jm00160a035

Nichols, DE; Lloyd, DH; Hoffman, AJ; Nichols, MB; Yim, GKW. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J. Med. Chem., 1 Jan 1982, 25 (5), 530–535. 804 kB. http://dx.doi.org/10.1021/jm00347a010

Baumann, MH; Ayestas, MA; Partilla, JS; Sink, JR; Shulgin, AT; Daley, PF; Brandt, SD; Rothman, RB; Ruoho, AE; Cozzi, NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology, 1 Apr 2012, 37, 1192–1203. 763 kB. http://dx.doi.org/10.1038/npp.2011.304

Baumann, MH; Clark, RD; Budzynski, AG; Partilla, JS; Blough, BE; Rothman, RB. N-Substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or ‘Ecstasy’). Neuropsychopharmacology, 1 Mar 2005, 30 (3), 550–560. 184 kB. http://dx.doi.org/10.1038/sj.npp.1300585

Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 2002, 1634–1638. 115 kB. http://dx.doi.org/10.1039/b200607c

Gandy, MN; Mclldowie, M; Lewis, K; Wasik, AM; Salomonczyk, D; Wagg, K; Millar, ZA; Tindiglia, D; Huot, P; Johnston, T; Thiele, S; Nguyen, B; Barnes, NM; Brotchie, JM; Martin-Iverson, MT. Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt’s lymphoma cytotoxicity. Med. Chem. Comm., 2010, 1 (4), 287–293. 177 kB. http://dx.doi.org/10.1039/c0md00108b

Shulgin, AT. The background and chemistry of MDMA. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 291–304. 13.2 MB. http://dx.doi.org/10.1080/02791072.1986.10472361

Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 305–313. 10.7 MB. http://dx.doi.org/10.1080/02791072.1986.10472362

Siegel, RK. MDMA: Nonmedical use and intoxication. Journal of Psychoactive Drugs, 1 Oct 1986, 18 (4), 349–354. 6.0 MB. http://dx.doi.org/10.1080/02791072.1986.10472368

Renfroe, CL. MDMA on the Street: Analysis Anonymous®. Journal of Psychoactive Drugs, 1 Oct 1986, 18 (4), 363–369. 3.7 MB. http://dx.doi.org/10.1080/02791072.1986.10472371

Pentney, AR. An exploration of the history and controversies surrounding MDMA and MDA. J. Psychoactive Drugs, 1 Jul 2001, 33 (3), 213–221. 871 kB. http://dx.doi.org/10.1080/02791072.2001.10400568

Moonzwe, LS; Schensul, JJ; Kostick, KM. The role of MDMA (Ecstasy) in coping with negative life situations among urban young adults. J. Psychoactive Drugs, 29 Aug 2011, 43 (3), 199–210. 137 kB. http://dx.doi.org/10.1080/02791072.2011.605671

Parrott, AC. The potential dangers of using MDMA for psychotherapy. Journal of Psychoactive Drugs, 1 Jan 2014, 46 (1), 37–43. 123 kB. http://dx.doi.org/10.1080/02791072.2014.873690

Passie, T; Benzenhöfer, U. The history of MDMA as an underground drug in the United States, 1960–1979. Journal of Psychoactive Drugs, 14 Mar 2016, 48 (2), 67–75. 1.0 MB. http://dx.doi.org/10.1080/02791072.2015.1128580

Shulgin, AT; Jacob, P. Potential misrepresentation of 3,4-methylene-dioxyamphetamine (MDA). A toxicological warning. J. Anal. Toxicol., 1 Jan 1982, 6 (2), 71–75. 5.6 MB. http://dx.doi.org/10.1093/jat/6.2.71

Benzenhõfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. http://dx.doi.org/10.1111/j.1360-0443.2010.02948.x

Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. http://dx.doi.org/10.1124/jpet.106.103622

Green, AR; Mechan, AO; Elliott, JM; O’Shea, E; Colado, MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). Pharmacol. Rev., 1 Jan 2003, 55 (3), 463–508. 544 kB. http://dx.doi.org/10.1124/pr.55.3.3

Galloway, G; Shulgin, A; Kornfeld, H; Frederick, S. Amphetamine, not MDMA, is associated with intracranial hemorrhage. J. Accid. Emerg. Med., 1 Jan 1995, 12 (3), 231–2. 428 kB. http://dx.doi.org/10.1136/emj.12.3.231 The target of Sasha’s critique: Intracranial haemorrhage associated with ingestion of ‘Ecstasy’.

Hayden Griffin, O. Is the government keeping the peace or acting like our parents? Rationales for the legal prohibitions of GHB and MDMA. J. Drug Issues, 1 Jul 2012, 42 (3), 247–262. 703 kB. http://dx.doi.org/10.1177/0022042612456014

Sessa, B; Nutt, DJ. MDMA, politics and medical research: Have we thrown the baby out with the bathwater? J. Psychopharmacol., 1 Nov 2007, 21 (8), 787–791. 178 kB. http://dx.doi.org/10.1177/0269881107084738

Brunt, TM; Poortman, A; Niesink, RJM; van den Brink, W. Instability of the ecstasy market and a new kid on the block: mephedrone. J. Psychopharmacol., 1 Nov 2011, 25 (11), 1543–1547. 238 kB. http://dx.doi.org/10.1177/0269881110378370

Armenian, P; Mamantov, TM; Tsutaoka, BT; Gerona, RRL; Silman, EF; Wu, AHB; Olson, KR. Multiple MDMA (ecstasy) overdoses at a rave event: A case series. J. Intensive Care, 1 Jul 2013, 28 (4), 252-258. 130 kB. http://dx.doi.org/10.1177/0885066612445982

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. http://dx.doi.org/10.1371/journal.pone.0009019

Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2.2 MB. http://dx.doi.org/10.1520/JFS12874J

Fromberg, E. Ecstasy: the Dutch story. J. Subst. Use, 1998, 3 (2), 89–94. 709 kB. http://dx.doi.org/10.3109/14659899809053479

Grob, CS. Deconstructing ecstasy: The politics of MDMA research. Addict. Res. Theory, 2000, 8 (6), 549–588. 2.4 MB. http://dx.doi.org/10.3109/16066350008998989

Puerta, E; Aguirre, N. Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’): Neurodegeneration versus neuromodulation. Pharmaceuticals, 5 Jul 2011, 4 (7), 992–1018. 411 kB. http://dx.doi.org/10.3390/ph4070992

Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1.5 MB.

Shulgin, AT. History of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, S, Ed., Kluwer Academic Publishers, Norwell, MA, 1990; pp 1–20. 3.8 MB.

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 8–15. 457 kB.

Shulgin, AT; Nichols, DE. Characterization of three new psychotomimetics. In The Psychopharmacology of Hallucinogens; Stillman, RC; Willette, RE, Eds., Pergamon Press, New York, 1978; pp 74–84. 547 kB.

Kalant, H. The pharmacology and toxicology of “Ecstasy” (MDMA) and related drugs. Can. Med. Assoc. J., 1 Jan 2001, 165 (7), 917–928. 253 kB.

Trudeau, GB. Ecstasy: Whither the future? In Doonesbury Deluxe; , Henry Holt and Company, 19 Aug 1985; . 3.3 MB.

Fenderson5555. Mechanisms in MDMA synthesis. 5 Jan 2011. 4.4 MB.

Vollenweider, FX; Geyer, M; Greer, G. Acute psychological and neurophysiological effects of MDMA in humans. In Heffter Review; Nichols, DE, Ed., Heffter Research Institute, Santa Fe, NM, 2001; Vol. 2, pp 53–63. 338 kB.

Bailey, K; By, AW; Legault, D; Verner, D. Identification of the N-methylated analogs of the hallucinogenic amphetamines and some isomers. J. Assoc. Off. Anal. Chem., 1975, 58 (1), 62–69. 2.0 MB.

Oberlender, R; Nichols, DE. (+)-N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxymethamphetamine-like behavioral activity. J. Pharmacol. Exp. Ther., 1 Dec 1990, 255 (3), 1098–1106. 1.9 MB.

Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. Journal of Criminal Law and Criminology, 1 Jan 1972, 63 (2), 304. 996 kB.

Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.

Makino, Y; Kurobane, S; Miyasaka, K. Profiling of ecstasy tablets seized in Japan. Microgram J., 1 Jul 2003, 1 (3–4), 169–176. 614 kB.

Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.

Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 2012, 9 (1), 27–32. 496 kB.

Shulgin, AT. What is MDMA? PharmChem Newsletter, 1 Jan 1985, 14 (3), 3–11. 952 kB.

Bernschneider-Reif, S; Öxler, F; Freudenmann, RW. The origin of MDMA (“Ecstasy”) – separating the facts from the myth. Die Pharmazie - An International Journal of Pharmaceutical Sciences, 1 Nov 2006, 61 (11), 966–972. 315 kB.

Mumane, KS. Neuropharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers. Ph. D. Thesis, Emory University, Atlanta, GA, USA, 2010. 4.3 MB.

Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.

Callaghan, PD. Comparative neuropharmacology of the substituted amphetamines, p-methoxyamphatamine (PMA) & 3,4-methylenedioxymethamphetamine (MDMA). Ph. D. Thesis, University of Adelaide, Adelaide, Australia, 1 Aug 2008. 1.6 MB.

Brown, CR; McKinney, H; Osterloh, JD; Shulgin, AT; Jacob, P; Olson, KR. Severe adverse reaction to 3,4-methylenedioxymethamphetamine (MDMA). Vet. Hum. Toxicol., 1 Oct 1986, 28 (5), 490. 239 kB.

Meyers-Riggs, B. The mirrored magic of MDMA. countyourculture, countyourculture: rational exploration of the underground, 23 May 2011.

Shulgin, AT. Thought policing MDMA users (AB 1416). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 20 Apr 2001.

Shulgin, AT. Ecstasy pill testing. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 12 Sep 2002.

Shulgin, AT. MDMA isomers. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 27 Aug 2001.

Shulgin, AT. Making MDA, MDEA, MDMA. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Mar 2001.

Shulgin, AT. MDMA (Ecstasy) v. Methamphetamine. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Feb 2001.

Shulgin, AT. MDMA and its methylenedioxy ring. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 3 Jun 2003.

Shulgin, AT. Taking MDMA (Ecstasy) and other drugs when pregnant. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 28 Jan 2003.

Shulgin, AT. Roadblocks to entheogen research. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 12 Sep 2001.

Shulgin, AT. Making MDMA (II): “Ecstasy”, MDMA, & Safrole. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 1 May 2002.

Shulgin, AT. MDMA (Ecstasy) tolerance. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 10 Apr 2002.

Shulgin, AT. Drug testing hair for MDMA (Ecstasy). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 4 Mar 2005.

FLEA
MDA
MDAL
MDBU
MDBZ
MDCPM
MDDM
MDE
MDHOET
MDIP
MDMEO
MDMEOET
MDOH
MDPL
MDPR
MDIB
MDTB
MDAM
MDHE
MDOC
MDDEA · MDDE
MDCM
MDBA
MDTFEA
MDMEA
MDMPA
MDMIPA
MDSB
N-Formyl-MDMA
MDMP
METHYL-J
METHYL-K
MDMPEA
METHYL-L
β-MeO-MDMA
MADAM-2
2-MDMOH
MDMC
F2-MDMA
IMA · IMP
IBF5MAP
DHMA
DMMA
6-MAPB
5-MAPB
6-MAPDB
5-MAPDB
homo-MDPEA · GAMMA
Safrole
α-Isosafrole
β-Isosafrole
bk-MDMA · Methylone
ONE · MDC
MDPPP
5,6-MDAI
5,6-MDMAI · MDMAI
6,7-MDAT
6,7-MDMAT · MDMAT
α,N-DMMDBA
α-MMDBA
N-MMDBA
MDBZP · Methylenedioxybenzylpiperazine
homo-MDMA
homo-MDA
MDCPA
499
MDAR
2563
2566
MDEAR
S-MDMA
R-MDMA
J
MDPH
M-ALPHA
7-Me-MDA · EIDA
N,N-Me-MDPEA · Lobivine
PMMA-βk · Methedrone
2-Me-MDA · 2-Methyl-MDA
5-Me-MDA · 5-Methyl-MDA
6-Me-MDA · 6-Methyl-MDA
4-Ethoxycathinone
α-Me-N-Et-MDBA
α,N,N-TMMDBA
α,α,N-TMMDBA
homo-MDA
2-MMA-βk
3-MeOMC · 3-MMA-βk
AcO-MePEA
N,N-Me-2,3-MDPEA
N-Et-2,3-MDPEA
2,3-MDMA
α,α-Me-2,3-MDPEA
2,3-BDB
3,4-DMCPA
N-Et-MDPEA
β,N-Me-MDPEA
EDA
2C-G-1
N-Ethyl-N-methylpiperonylamine
2,5-DMAI
2520
2521
2522
1094
1007
FLEA
MDA
MDAL
MDBU
MDBZ
MDCPM
MDDM
MDE
MDHOET
MDIP
MDMEO
MDMEOET
MDOH
MDPL
MDPR
MDIB
MDTB
MDAM
MDHE
MDOC
MDDEA · MDDE
MDCM
MDBA
MDTFEA
MDMEA
MDMPA
MDMIPA
MDSB
N-Formyl-MDMA
MDMP
METHYL-J
METHYL-K
MDMPEA
METHYL-L
β-MeO-MDMA
MADAM-2
2-MDMOH
MDMC
F2-MDMA
IMA · IMP
IBF5MAP
DHMA
DMMA
6-MAPB
5-MAPB
6-MAPDB
5-MAPDB
homo-MDPEA · GAMMA
Safrole
α-Isosafrole
β-Isosafrole
bk-MDMA · Methylone
ONE · MDC
MDPPP
5,6-MDAI
5,6-MDMAI · MDMAI
6,7-MDAT
6,7-MDMAT · MDMAT
α,N-DMMDBA
α-MMDBA
N-MMDBA
MDBZP · Methylenedioxybenzylpiperazine
homo-MDMA
homo-MDA
MDCPA
499
MDAR
2563
2566
MDEAR
S-MDMA
R-MDMA
J
MDPH
M-ALPHA
7-Me-MDA · EIDA
N,N-Me-MDPEA · Lobivine
PMMA-βk · Methedrone
2-Me-MDA · 2-Methyl-MDA
5-Me-MDA · 5-Methyl-MDA
6-Me-MDA · 6-Methyl-MDA
4-Ethoxycathinone
α-Me-N-Et-MDBA
α,N,N-TMMDBA
α,α,N-TMMDBA
homo-MDA
2-MMA-βk
3-MeOMC · 3-MMA-βk
AcO-MePEA
N,N-Me-2,3-MDPEA
N-Et-2,3-MDPEA
2,3-MDMA
α,α-Me-2,3-MDPEA
2,3-BDB
3,4-DMCPA
N-Et-MDPEA
β,N-Me-MDPEA
EDA
2C-G-1
N-Ethyl-N-methylpiperonylamine
2,5-DMAI
2520
2521
2522
1094
1007
26 March 2017 · Creative Commons BY-NC-SA ·