Exploring MDMA. To explore a different substance…

Names:
MDMA
MDM
XTC
X
ADAM
EA-1475
Ecstasy
N-Methyl-3,4-methylenedioxyamphetamine
3,4-Methylenedioxy-N-methylamphetamine
IUPAC names:
1-(2H-1,3-Benzodioxol-5-yl)-N-methylpropan-2-amine
1-(1,3-Benzodioxol-5-yl)-N-methylpropan-2-amine
109 · C11H15NO2 · 193.242
InChI=1S/C11H15NO2/c1-8(12-2)5-9-3-4-10-11(6-9)14-7-13-10/h3-4,6,8,12H,5,7H2,1-2H3
SHXWCVYOXRDMCX-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Shulgin, AT. Ecstasy pill testing. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 12 Sep 2002.

Shulgin, AT. Roadblocks to entheogen research. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 12 Sep 2001.

Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.

Shulgin, AT. Thought policing MDMA users (AB 1416). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 20 Apr 2001.

Shulgin, AT. MDMA (Ecstasy) v. Methamphetamine. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Feb 2001.

Shulgin, AT. MDMA and its methylenedioxy ring. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 3 Jun 2003.

Shulgin, AT. Taking MDMA (Ecstasy) and other drugs when pregnant. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 28 Jan 2003.

Shulgin, AT. Making MDMA (II): “Ecstasy”, MDMA, & Safrole. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 1 May 2002.

Shulgin, AT. Making MDA, MDEA, MDMA. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Mar 2001.

Shulgin, AT. MDMA (Ecstasy) tolerance. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 10 Apr 2002.

Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. https://doi.org/10.1002/jps.2600690220

Shulgin, AT; Nichols, DE. Characterization of three new psychotomimetics. In The Psychopharmacology of Hallucinogens; Stillman, RC; Willette, RE, Eds., Pergamon Press, New York, 1978; pp 74–84. 547 kB.

Shulgin, AT. Drug testing hair for MDMA (Ecstasy). Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 4 Mar 2005.

Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. https://doi.org/10.1002/cbdv.200690035

Sprague, JE; Huang, X; Kanthasamy, A; Nichols, DE. Attenuation of 3,4-methylenedioxymethamphetamine (MDMA) induced neurotoxicity with the serotonin precursors tryptophan and 5-hydroxytryptophan. Life Sci., 1 Jan 1994, 55 (15), 1193–1198. 336 kB. https://doi.org/10.1016/0024-3205(94)00658-X

Galloway, G; Shulgin, AT; Kornfeld, H; Frederick, SL. Amphetamine, not MDMA, is associated with intracranial hemorrhage. J. Accid. Emerg. Med., 1 Jan 1995, 12 (3), 231–2. 428 kB. https://doi.org/10.1136/emj.12.3.231 The target of Sasha’s critique: Intracranial haemorrhage associated with ingestion of ‘Ecstasy’.

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2.2 MB. https://doi.org/10.1520/JFS12874J

Shulgin, AT. What is MDMA? PharmChem Newsletter, 1 Jan 1985, 14 (3), 3–11. 952 kB.

Trudeau, GB. Ecstasy: Whither the future? In Doonesbury Deluxe; , Henry Holt and Company, 19 Aug 1985; . 3.3 MB.

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413

Baumann, MH; Ayestas, MA; Partilla, JS; Sink, JR; Shulgin, AT; Daley, PF; Brandt, SD; Rothman, RB; Ruoho, AE; Cozzi, NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology, 1 Apr 2012, 37, 1192–1203. 763 kB. https://doi.org/10.1038/npp.2011.304

Meyers-Riggs, B. The mirrored magic of MDMA. countyourculture, countyourculture: rational exploration of the underground, 23 May 2011.

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #30

Chen, B; Liu, J; Chen, W; Chen, H; Lin, C. A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta, 15 Jan 2008, 74 (4), 512–517. 486 kB. https://doi.org/10.1016/j.talanta.2007.06.012

Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. https://doi.org/10.1016/0014-2999(87)90173-7

Johnson, MP; Hoffman, AJ; Nichols, DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 16 Dec 1986, 132 (2–3), 269–276. 559 kB. https://doi.org/10.1016/0014-2999(86)90615-1

Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. https://doi.org/10.1007/BF03033455

de la Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. https://doi.org/10.1016/j.tips.2004.08.001

Sprague, JE; Nichols, DE. Neurotoxicity of MDMA (ecstasy): beyond metabolism. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 59–60. 60 kB. https://doi.org/10.1016/j.tips.2004.12.001

de la Torre, R; Farré, M; Monks, TJ; Jones, D. Response to Sprague and Nichols: Contribution of metabolic activation to MDMA neurotoxicity. Trends Pharmacol. Sci., 1 Feb 2005, 26 (2), 60–61. 60 kB. https://doi.org/10.1016/j.tips.2004.12.004

Lieberman, JA; Mailman, RB; Duncan, G; Sikich, L; Chakos, M; Nichols, DE; Kraus, JE. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol. Psychiat., 1 Dec 1998, 44 (11), 1099–1117. 154 kB. https://doi.org/10.1016/S0006-3223(98)00187-5

Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. https://doi.org/10.1016/j.forsciint.2004.06.016

Baumann, MH; Clark, RD; Budzynski, AG; Partilla, JS; Blough, BE; Rothman, RB. N-Substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or ‘Ecstasy’). Neuropsychopharmacology, 1 Mar 2005, 30 (3), 550–560. 184 kB. https://doi.org/10.1038/sj.npp.1300585

Puerta, E; Aguirre, N. Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’): Neurodegeneration versus neuromodulation. Pharmaceuticals, 5 Jul 2011, 4 (7), 992–1018. 411 kB. https://doi.org/10.3390/ph4070992

Marona-Lewicka, D; Nichols, DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol. Biochem. Behav., 1 Jan 2007, 87 (4), 453–461. 266 kB. https://doi.org/10.1016/j.pbb.2007.06.001

Selken, J; Nichols, DE. α1-Adrenergic receptors mediate the locomotor response to systemic administration of (±)-3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol. Biochem. Behav., 1 Jan 2007, 86 (4), 622–630. 1.0 MB. https://doi.org/10.1016/j.pbb.2007.02.006

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 8–15. 457 kB.

Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1.5 MB.

Shulgin, AT; Jacob, P. Potential misrepresentation of 3,4-methylene-dioxyamphetamine (MDA). A toxicological warning. J. Anal. Toxicol., 1 Jan 1982, 6 (2), 71–75. 5.6 MB. https://doi.org/10.1093/jat/6.2.71

Nichols, DE; Hoffman, AJ; Oberlender, RA; Jacob, P; Shulgin, AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: Representatives of a novel therapeutic class. J. Med. Chem., 1 Jan 1986, 29 (10), 2009–2015. 1.0 MB. https://doi.org/10.1021/jm00160a035

Shulgin, AT. The background and chemistry of MDMA. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 291–304. 13.2 MB. https://doi.org/10.1080/02791072.1986.10472361

Brown, CR; McKinney, H; Osterloh, JD; Shulgin, AT; Jacob, P; Olson, KR. Severe adverse reaction to 3,4-methylenedioxymethamphetamine (MDMA). Vet. Hum. Toxicol., 1 Oct 1986, 28 (5), 490. 239 kB.

Shulgin, AT. History of MDMA. In Ecstasy: The Clinical, Pharmacological and Neurotoxicological Effects of the Drug MDMA; Peroutka, S, Ed., Kluwer Academic Publishers, Norwell, MA, 1990; pp 1–20. 3.8 MB.

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M

Cozzi, NV; Sievert, MK; Shulgin, AT; Jacob, P; Ruoho, AE. Inhibition of plasma membrane monoamine transporters by β-ketoamphetamines. Eur. J. Pharmacol., 1 Jan 1999, 381 (1), 63–69. 111 kB. https://doi.org/10.1016/S0014-2999(99)00538-5

Nichols, DE; Lloyd, DH; Hoffman, AJ; Nichols, MB; Yim, GKW. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J. Med. Chem., 1 Jan 1982, 25 (5), 530–535. 804 kB. https://doi.org/10.1021/jm00347a010

Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 305–313. 10.7 MB. https://doi.org/10.1080/02791072.1986.10472362

Steele, TD; Nichols, DE; Yim, GKW. MDMA transiently alters biogenic amines and metabolites in mouse brain and heart. Pharmacol. Biochem. Behav., 1 Jan 1989, 34 (2), 223–227. 477 kB. https://doi.org/10.1016/0091-3057(89)90303-1

Johnson, MP; Nichols, DE. Neurotoxic effects of the alpha-ethyl homologue of MDMA following subacute administration. Pharmacol. Biochem. Behav., 1 Jan 1989, 33 (1), 105–108. 399 kB. https://doi.org/10.1016/0091-3057(89)90437-1

Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 9–16. 1.1 MB. https://doi.org/10.1016/0014-2999(91)90659-E

Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 53–58. 714 kB. https://doi.org/10.1016/0014-2999(91)90664-C

Johnson, MP; Huang, X; Nichols, DE. Serotonin neurotoxicity in rats after combined treatment with a dopaminergic agent followed by a nonneurotoxic 3,4-methylenedioxymethamphetamine (MDMA) analogue. Pharmacol. Biochem. Behav., 1 Jan 1991, 40 (4), 915–922. 845 kB. https://doi.org/10.1016/0091-3057(91)90106-C

Steele, TD; Brewster, WK; Johnson, MP; Nichols, DE; Yim, GKW. Assessment of the role of α-methylepinine in the neurotoxicity of MDMA. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (2), 345–351. 723 kB. https://doi.org/10.1016/0091-3057(91)90289-E

Huang, X; Nichols, DE. 5-HT2 receptor-mediated potentiation of dopamine synthesis and central serotonergic deficits. Eur. J. Pharmacol., 1 Jan 1993, 238 (2–3), 291–296. 553 kB. https://doi.org/10.1016/0014-2999(93)90859-G

Marona-Lewicka, D; Rhee, G; Sprague, JE; Nichols, DE. Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol. Biochem. Behav., 1 Jan 1996, 53 (1), 99–105. 1.0 MB. https://doi.org/10.1016/0091-3057(95)00205-7

Falk, EM; Cook, VJ; Nichols, DE; Sprague, JE. An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol. Biochem. Behav., 1 Jan 2002, 72 (3), 617–622. 120 kB. https://doi.org/10.1016/S0091-3057(02)00728-1

Callaghan, PD. Comparative neuropharmacology of the substituted amphetamines, p-methoxyamphatamine (PMA) & 3,4-methylenedioxymethamphetamine (MDMA). Ph. D. Thesis, University of Adelaide, Adelaide, Australia, 1 Aug 2008. 1.6 MB.

Kalant, H. The pharmacology and toxicology of “Ecstasy” (MDMA) and related drugs. Can. Med. Assoc. J., 1 Jan 2001, 165 (7), 917–928. 253 kB.

Green, AR; Mechan, AO; Elliott, JM; O’Shea, E; Colado, MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). Pharmacol. Rev., 1 Jan 2003, 55 (3), 463–508. 544 kB. https://doi.org/10.1124/pr.55.3.3

Capela, JP; Macedo, C; Branco, PS; Ferreira, LM; Lobo, AM; Fernandes, E; Remião, F; Bastos, ML; Dirnagl, U; Meisel, A; Carvalho, FG. Neurotoxicity mechanisms of thioether Ecstasy metabolites. Neuroscience, 1 Jan 2007, 146, 1743–1757. 995 kB. https://doi.org/10.1016/j.neuroscience.2007.03.028

Shulgin, AT. MDMA isomers. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 27 Aug 2001.

Sessa, B; Nutt, DJ. MDMA, politics and medical research: Have we thrown the baby out with the bathwater? J. Psychopharmacol., 1 Nov 2007, 21 (8), 787–791. 178 kB. https://doi.org/10.1177/0269881107084738

Benzenhõfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. https://doi.org/10.1111/j.1360-0443.2010.02948.x

Pentney, AR. An exploration of the history and controversies surrounding MDMA and MDA. J. Psychoactive Drugs, 1 Jul 2001, 33 (3), 213–221. 871 kB. https://doi.org/10.1080/02791072.2001.10400568

Passie, T; Hartmann, U; Schneider, U; Emrich, HM; Krüger, TH. Ecstasy (MDMA) mimics the post-orgasmic state: Impairment of sexual drive and function during acute MDMA-effects may be due to increased prolactin secretion. Med. Hypotheses, 2005, 64 (5), 899–903. 110 kB. https://doi.org/10.1016/j.mehy.2004.11.044

Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. https://doi.org/10.1016/S0304-3940(02)00823-6

Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. https://doi.org/10.1016/0091-3057(88)90001-9

Benzenhõfer, U; Passie, T. Zur Frühgeschichte von “Ecstasy”. Nervenarzt, 2006, 77 (1), 95–96, 98–99. 533 kB. https://doi.org/10.1007/s00115-005-2001-y

Shulgin, AT; Shulgin, LA; Jacob, P. A protocol for the evaluation of new psychoactive drugs. Meth. Find. Exp. Clin. Pharmacol., 1 May 1986, 8 (5), 313. 7.9 MB.

Pilgrim, J; Gerostamoulos, D; Woodford, N; Drummer, OH. Serotonin toxicity involving MDMA (ecstasy) and moclobemide. Forensic Sci. Int., 10 Feb 2012, 215 (1–3), 184–188. 189 kB. https://doi.org/10.1016/j.forsciint.2011.04.008

Oberlender, R; Nichols, DE. (+)-N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxymethamphetamine-like behavioral activity. J. Pharmacol. Exp. Ther., 1 Dec 1990, 255 (3), 1098–1106. 1.9 MB.

Capela, JP; Carmo, H; Remião, F; Bastos, ML; Meisel, A; Carvalho, FG. Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: An overview. Mol. Neurobiol., 1 Jun 2009, 39 (3), 210–271. 1.9 MB. https://doi.org/10.1007/s12035-009-8064-1

Brunt, TM; Poortman, A; Niesink, RJM; van den Brink, W. Instability of the ecstasy market and a new kid on the block: mephedrone. J. Psychopharmacol., 1 Nov 2011, 25 (11), 1543–1547. 238 kB. https://doi.org/10.1177/0269881110378370

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Armenian, P; Mamantov, TM; Tsutaoka, BT; Gerona, RRL; Silman, EF; Wu, AHB; Olson, KR. Multiple MDMA (ecstasy) overdoses at a rave event: A case series. J. Intensive Care, 1 Jul 2013, 28 (4), 252-258. 130 kB. https://doi.org/10.1177/0885066612445982

Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 2012, 9 (1), 27–32. 496 kB.

Fenderson5555. Mechanisms in MDMA synthesis. , 5 Jan 2011. . Fenderson5555 4.4 MB.

Maher, HM; Awad, T; DeRuiter, J; Clark, CR. GC–IRD methods for the identification of some tertiary amines related to MDMA. Forensic Sci. Int., 15 Jun 2010, 199 (1–3), 18–28. 877 kB. https://doi.org/10.1016/j.forsciint.2010.02.022

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003

Hayden Griffin, O. Is the government keeping the peace or acting like our parents? Rationales for the legal prohibitions of GHB and MDMA. J. Drug Issues, 1 Jul 2012, 42 (3), 247–262. 703 kB. https://doi.org/10.1177/0022042612456014

Mohamed, WM; Hamida, SB; Cassel, J; de Vasconcelos, AP; Jones, BC. MDMA: Interactions with other psychoactive drugs. Pharmacol. Biochem. Behav., 1 Oct 2011, 99 (4), 759–774. 396 kB. https://doi.org/10.1016/j.pbb.2011.06.032

Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 2002, 1634–1638. 115 kB. https://doi.org/10.1039/b200607c

Moonzwe, LS; Schensul, JJ; Kostick, KM. The role of MDMA (Ecstasy) in coping with negative life situations among urban young adults. J. Psychoactive Drugs, 29 Aug 2011, 43 (3), 199–210. 137 kB. https://doi.org/10.1080/02791072.2011.605671

Partilla, JS; Dempsey, AG; Nagpal, AS; Blough, BE; Baumann, MH; Rothman, RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J. Pharmacol. Exp. Ther., 1 Oct 2006, 319 (1), 237–246. 367 kB. https://doi.org/10.1124/jpet.106.103622

Makino, Y; Kurobane, S; Miyasaka, K. Profiling of ecstasy tablets seized in Japan. Microgram J., 1 Jul 2003, 1 (3–4), 169–176. 614 kB.

Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Mumane, KS. Neuropharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and its stereoisomers. Ph. D. Thesis, Emory University, Atlanta, GA, USA, 2010. 4.3 MB.

Gandy, MN; Mclldowie, M; Lewis, K; Wasik, AM; Salomonczyk, D; Wagg, K; Millar, ZA; Tindiglia, D; Huot, P; Johnston, T; Thiele, S; Nguyen, B; Barnes, NM; Brotchie, JM; Martin-Iverson, MT. Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt’s lymphoma cytotoxicity. Med. Chem. Comm., 2010, 1 (4), 287–293. 177 kB. https://doi.org/10.1039/c0md00108b

Oberlender, R; Nichols, DE. Drug discrimination studies with MDMA and amphetamine. Psychopharmacology, 1 May 1988, 95 (1), 71–26. 674 kB. https://doi.org/10.1007/BF00212770

Bailey, K; By, AW; Legault, D; Verner, D. Identification of the N-methylated analogs of the hallucinogenic amphetamines and some isomers. J. Assoc. Off. Anal. Chem., 1975, 58 (1), 62–69. 2.0 MB.

Stojanovska, N; Fu, S; Tahtouh, M; Kelly, T; Beavis, A; Kirkbride, KP. A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. Forensic Sci. Int., 10 Jan 2013, 224 (1–3), 8–26. 813 kB. https://doi.org/10.1016/j.forsciint.2012.10.040

Eshleman, AJ; Wolfrum, KM; Hatfield, MG; Johnson, RA; Murphy, KV; Janowsky, A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol., 15 Jun 2013, 85 (12), 1803–1815. 2.2 MB. https://doi.org/10.1016/j.bcp.2013.04.004

Dybdal-Hargreaves, NF; Holder, ND; Ottoson, PE; Sweeney, MD; Williams, T. Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur. J. Pharmacol., 15 Aug 2013, 714 (1–3), 32–40. 837 kB. https://doi.org/10.1016/j.ejphar.2013.05.024

De Felice, LJ; Glennon, RA; Negus, SS. Synthetic cathinones: Chemical phylogeny, physiology, and neuropharmacology. Life Sci., 27 Feb 2014, 97 (1), 20–26. 697 kB. https://doi.org/10.1016/j.lfs.2013.10.029

Angoa-Pérez, M; Kane, MJ; Herrera-Mundo, N; Francescutti, DM; Kuhn, DM. Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci., 27 Feb 2014, 97 (1), 31–36. 888 kB. https://doi.org/10.1016/j.lfs.2013.07.015

Halpin, LE; Collins, SA; Yamamoto, BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci., 27 Feb 2014, 97 (1), 37–44. 507 kB. https://doi.org/10.1016/j.lfs.2013.07.014

Vollenweider, FX; Geyer, M; Greer, G. Acute psychological and neurophysiological effects of MDMA in humans. In Heffter Review; Nichols, DE, Ed., Heffter Research Institute, Santa Fe, NM, 2001; Vol. 2, pp 53–63. 338 kB.

Fromberg, E. Ecstasy: the Dutch story. J. Subst. Use, 1998, 3 (2), 89–94. 709 kB. https://doi.org/10.3109/14659899809053479

Grob, CS. Deconstructing ecstasy: The politics of MDMA research. Addict. Res. Theory, 2000, 8 (6), 549–588. 2.4 MB. https://doi.org/10.3109/16066350008998989

Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. https://doi.org/10.1016/S0041-008X(73)80016-X

Ziporyn, T. A growing industry and menace: makeshift laboratory’s designer drugs. JAMA, 12 Dec 1986, 256 (22), 3061–3063. 486 kB. https://doi.org/10.1001/jama.1986.03380220011003

Passie, T; Benzenhöfer, U. The history of MDMA as an underground drug in the United States, 1960–1979. J. Psychoactive Drugs, 14 Mar 2016, 48 (2), 67–75. 1.0 MB. https://doi.org/10.1080/02791072.2015.1128580

Bernschneider-Reif, S; Öxler, F; Freudenmann, RW. The origin of MDMA (“Ecstasy”) – Separating the facts from the myth. Pharmazie, 1 Nov 2006, 61 (11), 966–972. 315 kB.

Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB.

Parrott, AC. The potential dangers of using MDMA for psychotherapy. J. Psychoactive Drugs, 1 Jan 2014, 46 (1), 37–43. 123 kB. https://doi.org/10.1080/02791072.2014.873690

Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., Aug 1975, 47 (9), 841A–844a. 1.6 MB. https://doi.org/10.1021/ac60359a050

Siegel, RK. MDMA: Nonmedical use and intoxication. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 349–354. 6.0 MB. https://doi.org/10.1080/02791072.1986.10472368

Renfroe, CL. MDMA on the Street: Analysis Anonymous®. J. Psychoactive Drugs, 1 Oct 1986, 18 (4), 363–369. 3.7 MB. https://doi.org/10.1080/02791072.1986.10472371

Doblin, R; Greer, G; Holland, J; Jerome, L; Mithoefer, MC; Sessa, B. A reconsideration and response to Parrott AC (2013) “Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research”. Hum. Psychopharmacol. Clin. Exp., 1 Mar 2014, 29 (2), 105–108. 72 kB. https://doi.org/10.1002/hup.2389

Parrott, AC. MDMA is certainly damaging after 25 years of empirical research: a reply and refutation of Doblin et al. (2014). Hum. Psychopharmacol. Clin. Exp., 1 Mar 2014, 29 (2), 109–119. 144 kB. https://doi.org/10.1002/hup.2390

Kapitány-Fövény, M; Kertész, M; Winstock, A; Deluca, P; Corazza, O; Farkas, J; Zacher, G; Urbán, R; Demetrovics, Z. Substitutional potential of mephedrone: an analysis of the subjective effects. Hum. Psychopharmacol. Clin. Exp., 1 Jul 2013, 28 (4), 308–316. 141 kB. https://doi.org/10.1002/hup.2297

Parrott, AC. Human psychobiology of MDMA or “Ecstasy”: an overview of 25 years of empirical research. Hum. Psychopharmacol. Clin. Exp., 1 Jul 2013, 28 (4), 289–307. 363 kB. https://doi.org/10.1002/hup.2318

Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Advances in Pharmacology, 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9

Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Analysis, 31 Aug 2017, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292

Ray, TS. Constructing the ecstasy of MDMA from its component mental organs: Proposing the primer/probe method. Med. Hypotheses, 1 Feb 2016, 87 48–60. 455 kB. https://doi.org/10.1016/j.mehy.2015.12.018

Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, , 50, 63-82. 627 kB. Retrieved from http://www.customs.go.jp/ccl_search/e_info_search/drugs/r_50_08_e.pdf

Anon. New drugs in Europe, 2016, European Monitoring Centre for Drugs and Drug Addiction, 1 May 2017. 489 kB.

Anon. New drugs in Europe, 2015, European Monitoring Centre for Drugs and Drug Addiction, 1 May 2016. 1.0 MB.

Mounteney, J; Griffiths, P; Bo, A; Cunningham, A; Matias, J; Pirona, A. Nine reasons why ecstasy is not quite what it used to be. Int. J. Drug Policy, 1 Jan 2018, 51 36–41. 334 kB. https://doi.org/10.1016/j.drugpo.2017.09.016

Nugteren-van Lonkhuyzen, JJ; van Riel, AJHP; Brunt, TM; Hondebrink, L. Pharmacokinetics, pharmacodynamics and toxicology of new psychoactive substances (NPS): 2C-B, 4-fluoroamphetamine and benzofurans. Drug Alcohol Depend., 1 Dec 2015, 157 18–27. 483 kB. https://doi.org/10.1016/j.drugalcdep.2015.10.011 #MDMA

Anon. New drugs in Europe, 2011, European Monitoring Centre for Drugs and Drug Addiction, 1 Apr 2012. 401 kB.

Clark, CR. Synthesis and analytical profiles for regioisomeric and isobaric amines related to MDMA, MDEA and MBDB: Differentiation of drug and non-drug substances of mass spectral equivalence, US DOJ, 1 Oct 2011. 3.9 MB. #1.1-3; 3.2-7; 4.2-7; 7.2-9; 9.1

Morris, H. A clandestine chemist’s tale. Hamilton’s Pharmacopeia, 1 Jan 2018. S2 E05, 44:05. Vice 133.4 MB.

Baker, LE. Hallucinogens in drug discrimination. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 201-219. 342 kB. https://doi.org/10.1007/7854_2017_476

Wasik, AM; Gandy, MN; McIldowie, M; Holder, MJ; Chamba, A; Challa, A; Lewis, KD; Young, SP; Scheel-Toellner, D; Dyer, MJ; Barnes, NM; Piggott, MJ; Gordon, J. Enhancing the anti-lymphoma potential of 3,4-methylenedioxymethamphetamine (‘ecstasy’) through iterative chemical redesign: mechanisms and pathways to cell death. Invest. New Drugs, 1 Aug 2012, 30 (4), 1471-1483. 575 kB. https://doi.org/10.1007/s10637-011-9730-5

Aalberg, L; DeRuiter, J; Noggle, FT; Sippola, E; Clark, CR. Chromatographic and mass spectral methods of identification for the side-chain and ring regioisomers of methylenedioxymethamphetamine. J. Chromatogr. Sci., 1 Aug 2000, 38 (8), 329–336. 861 kB. https://doi.org/10.1093/chromsci/38.8.329 #3

Dal Cason, TA; Meyers, JA; Lankin, DC. Proton and carbon-13 NMR assignments of 3,4-methylenedioxyamphetamine (MDA) and some analogues of MDA. Forensic Sci. Int., 18 Apr 1997, 86 (1–2), 15-24. 931 kB. https://doi.org/10.1016/S0379-0738(97)02102-6

Burns, DT; Lewis, RJ; Stevenson, P. Determination of 3,4-methylenedioxyamphetamine analogues (“ecstasy”) by proton nuclear magnetic resonance spectrometry. Anal. Chim. Acta., 10 Mar 1997, 339 (3), 259-263. 405 kB. https://doi.org/10.1016/S0003-2670(96)00485-0

Shulgin, AT. Letter to the DEA re scheduling of MDMA. 29 Aug 1984. 170 kB. #MDMA

Hermle, L; Kraehenmann, R. Experimental psychosis research and schizophrenia—Similarities and dissimilarities in psychopathology. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 313-332. 446 kB. https://doi.org/10.1007/7854_2016_460

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

Halpern, JH; Lerner, AG; Passie, T. A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 333-360. 579 kB. https://doi.org/10.1007/7854_2016_457

Barrett, FS; Griffiths, RR. Classic hallucinogens and mystical experiences: Phenomenology and neural correlates. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 137-158. 848 kB. https://doi.org/10.1007/7854_2017_474

Brandt, SD; Kavanagh, PV. Addressing the challenges in forensic drug chemistry. Drug Test. Analysis, 1 Jan 2017, 9 (3), 342-346. 120 kB. https://doi.org/10.1002/dta.2169

Hofer, KE; Faber, K; Müller, DM; Hauffe, T; Wenger, U; Kupferschmidt, H; Rauber-Lüthy, C. Acute toxicity associated with the recreational use of the novel psychoactive benzofuran N-methyl-5-(2 aminopropyl)benzofuran. Ann. Emer. Med., 1 Jan 2017, 69 (1), 79-82. 284 kB. https://doi.org/10.1016/j.annemergmed.2016.03.042

Nichols, DE. Psychedelics. Pharmacol. Rev., 1 Apr 2016, 68 (2), 264-355. 1.9 MB. https://doi.org/10.1124/pr.115.011478 Updated with published correction to Figure 4 (the α-methyl group was missing in the original)

Rickli, A; Moning, OD; Hoener, MC; Liechti, ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol., 2016, 26 (8), 1327-1337. 845 kB. https://doi.org/10.1016/j.euroneuro.2016.05.001

King, LA. New phenethylamines in Europe. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570

Burns, L; Roxburgh, A; Bruno, R; Van Buskirk, J. Monitoring drug markets in the Internet age and the evolution of drug monitoring systems in Australia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 840-845. 113 kB. https://doi.org/10.1002/dta.1613

Burns, L; Roxburgh, A; Matthews, A; Bruno, R; Lenton, S; Van Buskirk, J. The rise of new psychoactive substance use in Australia. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 846-849. 422 kB. https://doi.org/10.1002/dta.1626

Vidal Giné, C; Espinosa, IF; Vilamala, MV. New psychoactive substances as adulterants of controlled drugs. A worrying phenomenon? Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 819-824. 113 kB. https://doi.org/10.1002/dta.1610

Hudson, AL; Lalies, MD; Baker, GB; Wells, K; Aitchison, KJ. Ecstasy, legal highs and designer drug use: A Canadian perspective. Drug Science, Policy and Law, 1 Jan 2014, 1, 2050324513509190. 230 kB. https://doi.org/10.1177/2050324513509190

Wilkins, C; Sweetsur, P. The impact of the prohibition of benzylpiperazine (BZP) ‘legal highs’ on the prevalence of BZP, new legal highs and other drug use in New Zealand. Drug Alcohol Depend., 1 Jan 2013, 127 (1-3), 72-80. 521 kB. https://doi.org/10.1016/j.drugalcdep.2012.06.014

Neudõrffer, A; Mueller, M; Martinez, C; Mechan, A; McCann, U; Ricaurte, GA; Largeron, M. Synthesis and neurotoxicity profile of 2,4,5-trihydroxymethamphetamine and its 6-(N-acetylcystein-S-yl) conjugate. Chem. Res. Toxicol., 2011, 24 (6), 968–278. 4.8 MB. https://doi.org/10.1021/tx2001459

Cassels, BK; Sáez-Briones, P. Dark classics in chemical neuroscience: Mescaline. ACS Chem. Neurosci., 8 Jun 2018, n/a. 424 kB. https://doi.org/10.1021/acschemneuro.8b00215

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Collins, M; Heagney, A; Cordaro, F; Odgers, D; Tarrant, G; Stewart, S. Methyl 3-[3′,4′-(methylenedioxy)phenyl]-2-methyl glycidate: an ecstasy precursor seized in Sydney, Australia. J. Forensic Sci., 1 Jul 2007, 52 (4), 898–903. 714 kB. https://doi.org/10.1111/j.1556-4029.2007.00480.x

Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1994; pp 3–41. 6.9 MB. #14

Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1989; pp 12–40. 282 kB. #1

Shulgin, AT. Chemistry of psychotomimetics. In Handbook of Experimental Pharmacology. Psychotropic Agents, Part III: Alcohol and Psychotomimetics, Psychotropic Effects of Central Acting Drugs; Hoffmeister, F; Stille, G, Eds., Springer-Verlag, Berlin, 1982; Vol. 55 (3), pp 3–29. 29.7 MB.

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #23a

Simmler, LD; Liechti, ME. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. In Handbook of Experimental Pharmacology; , Springer Berlin Heidelberg, 1 Jan 2018; . 298 kB. https://doi.org/10.1007/164_2018_113

BDB · J
MDPH
M-ALPHA
7-Me-MDA · EIDA
N,N-Me-MDPEA
4-MeOMC · Methedrone
2-Me-MDA · 2-Methyl-MDA
5-Me-MDA · 5-Methyl-MDA
6-Me-MDA · 6-Methyl-MDA
4-Ethoxycathinone
α-Me-N-Et-MDBA
α,N,N-TMMDBA
α,α,N-TMMDBA
homo-MDA
2-MeOMC
3-MeOMC
AcO-MePEA
N,N-Me-2,3-MDPEA
N-Et-2,3-MDPEA
2,3-MDMA
2,3-MDPH
2,3-BDB
3,4-DMCPA
N-Et-MDPEA
β,N-Me-MDPEA
EDA
2C-G-1
S-MDMA
R-MDMA
N-Ethyl-N-methylpiperonylamine
2,5-DMAI
Uberine
2520
2521
2522
1094
1007
10552
10548
10474
740
3C-BMH
10081
10076
Tolibut
iso-MDMA
Hydroxytolyl-mephedrone
4-Carboxymethamphetamine
19 August 2018 · Creative Commons BY-NC-SA ·